Network alternating direction method of multipliers for ultrahigh‐dimensional decentralised federated learning

Pub Date : 2024-04-05 DOI:10.1002/sta4.669
Wei Dong, Sanying Feng
{"title":"Network alternating direction method of multipliers for ultrahigh‐dimensional decentralised federated learning","authors":"Wei Dong, Sanying Feng","doi":"10.1002/sta4.669","DOIUrl":null,"url":null,"abstract":"Ultrahigh‐dimensional data analysis has received great achievement in recent years. When the data are stored in multiple clients and the clients can be connected only with each other through a network structure, the implementation of ultrahigh‐dimensional analysis can be numerically challenging or even infeasible. In this work, we study decentralised federated learning for ultrahigh‐dimensional data analysis, where the parameters of interest are estimated via a large amount of devices without data sharing by a network structure. In the local machines, each parallel runs gradient ascent to obtain estimators via the sparsity‐restricted constrained methods. Also, we obtain a global model by aggregating each machine's information via an alternating direction method of multipliers (ADMM) using a concave pairwise fusion penalty between different machines through a network structure. The proposed method can mitigate privacy risks from traditional machine learning, recover the sparsity and provide estimates of all regression coefficients simultaneously. Under mild conditions, we show the convergence and estimation consistency of our method. The promising performance of the method is supported by both simulated and real data examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrahigh‐dimensional data analysis has received great achievement in recent years. When the data are stored in multiple clients and the clients can be connected only with each other through a network structure, the implementation of ultrahigh‐dimensional analysis can be numerically challenging or even infeasible. In this work, we study decentralised federated learning for ultrahigh‐dimensional data analysis, where the parameters of interest are estimated via a large amount of devices without data sharing by a network structure. In the local machines, each parallel runs gradient ascent to obtain estimators via the sparsity‐restricted constrained methods. Also, we obtain a global model by aggregating each machine's information via an alternating direction method of multipliers (ADMM) using a concave pairwise fusion penalty between different machines through a network structure. The proposed method can mitigate privacy risks from traditional machine learning, recover the sparsity and provide estimates of all regression coefficients simultaneously. Under mild conditions, we show the convergence and estimation consistency of our method. The promising performance of the method is supported by both simulated and real data examples.
分享
查看原文
用于超高维分散联合学习的网络交替方向乘法
近年来,超高维数据分析取得了巨大成就。当数据存储在多个客户端,而客户端之间只能通过网络结构进行连接时,超高维分析的实现在数值上可能具有挑战性,甚至是不可行的。在这项工作中,我们研究了用于超高维数据分析的分散式联合学习,即通过大量设备估算相关参数,而无需通过网络结构共享数据。在本地机器中,每个并行运行梯度上升,通过稀疏性限制约束方法获得估计值。此外,我们还通过交替方向乘法(ADMM)聚合每台机器的信息,利用不同机器间的凹对融合惩罚,通过网络结构获得全局模型。所提出的方法可以降低传统机器学习的隐私风险,恢复稀疏性,并同时提供所有回归系数的估计值。在温和的条件下,我们展示了我们方法的收敛性和估计一致性。模拟和真实数据实例都证明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信