Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari
{"title":"Sharp conditions for the validity of the Bourgain–Brezis–Mironescu formula","authors":"Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari","doi":"10.1017/prm.2024.47","DOIUrl":null,"url":null,"abstract":"<p>Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each <span><span><span data-mathjax-type=\"texmath\"><span>$u\\in L^2(\\mathbb {R}^N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline1.png\"/></span></span>, are defined as the double integrals of weighted, squared difference quotients of <span><span><span data-mathjax-type=\"texmath\"><span>$u$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline2.png\"/></span></span>. Given a family of weights <span><span><span data-mathjax-type=\"texmath\"><span>$\\{\\rho _{\\varepsilon} \\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline3.png\"/></span></span>, <span><span><span data-mathjax-type=\"texmath\"><span>$\\varepsilon \\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline4.png\"/></span></span>, we devise sufficient and necessary conditions on <span><span><span data-mathjax-type=\"texmath\"><span>$\\{\\rho _{\\varepsilon} \\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline5.png\"/></span></span> for the associated nonlocal functionals to converge as <span><span><span data-mathjax-type=\"texmath\"><span>$\\varepsilon \\to 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline6.png\"/></span></span> to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.47","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each $u\in L^2(\mathbb {R}^N)$, are defined as the double integrals of weighted, squared difference quotients of $u$. Given a family of weights $\{\rho _{\varepsilon} \}$, $\varepsilon \in (0,\,1)$, we devise sufficient and necessary conditions on $\{\rho _{\varepsilon} \}$ for the associated nonlocal functionals to converge as $\varepsilon \to 0$ to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.