Sharp conditions for the validity of the Bourgain–Brezis–Mironescu formula

IF 1.3 3区 数学 Q1 MATHEMATICS
Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari
{"title":"Sharp conditions for the validity of the Bourgain–Brezis–Mironescu formula","authors":"Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari","doi":"10.1017/prm.2024.47","DOIUrl":null,"url":null,"abstract":"<p>Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each <span><span><span data-mathjax-type=\"texmath\"><span>$u\\in L^2(\\mathbb {R}^N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline1.png\"/></span></span>, are defined as the double integrals of weighted, squared difference quotients of <span><span><span data-mathjax-type=\"texmath\"><span>$u$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline2.png\"/></span></span>. Given a family of weights <span><span><span data-mathjax-type=\"texmath\"><span>$\\{\\rho _{\\varepsilon} \\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline3.png\"/></span></span>, <span><span><span data-mathjax-type=\"texmath\"><span>$\\varepsilon \\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline4.png\"/></span></span>, we devise sufficient and necessary conditions on <span><span><span data-mathjax-type=\"texmath\"><span>$\\{\\rho _{\\varepsilon} \\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline5.png\"/></span></span> for the associated nonlocal functionals to converge as <span><span><span data-mathjax-type=\"texmath\"><span>$\\varepsilon \\to 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline6.png\"/></span></span> to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.47","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each $u\in L^2(\mathbb {R}^N)$Abstract Image, are defined as the double integrals of weighted, squared difference quotients of $u$Abstract Image. Given a family of weights $\{\rho _{\varepsilon} \}$Abstract Image, $\varepsilon \in (0,\,1)$Abstract Image, we devise sufficient and necessary conditions on $\{\rho _{\varepsilon} \}$Abstract Image for the associated nonlocal functionals to converge as $\varepsilon \to 0$Abstract Image to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.

布尔干-布雷齐斯-米罗内斯库公式有效性的苛刻条件
继布尔甘(Bourgain)、布雷齐斯(Brezis)和米罗内斯库(Mironescu)的开创性论文之后,我们将重点放在一些非局部函数的渐近行为上,对于 L^2(\mathbb {R}^N)$ 中的每个 $u$,这些函数被定义为 $u$ 的加权平方差商的双积分。给定一个权值系列 $\{\rho _{\varepsilon}\$\varepsilon 在(0,\,1)$ 中,我们设计了关于 $\{rho _{\varepsilon} 的充分和必要条件。}\相关的非局部函数随着 $\varepsilon \to 0$ 收敛到迪里希特积分的变体上。最后,我们对我们的结果与现有文献进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信