Unit fractions with shifted prime denominators

IF 1.3 3区 数学 Q1 MATHEMATICS
Thomas F. Bloom
{"title":"Unit fractions with shifted prime denominators","authors":"Thomas F. Bloom","doi":"10.1017/prm.2024.42","DOIUrl":null,"url":null,"abstract":"<p>We prove that any positive rational number is the sum of distinct unit fractions with denominators in <span><span><span data-mathjax-type=\"texmath\"><span>$\\{p-1 : p\\textrm { prime}\\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240401120835823-0350:S0308210524000428:S0308210524000428_inline1.png\"/></span></span>. The same conclusion holds for the set <span><span><span data-mathjax-type=\"texmath\"><span>$\\{p-h : p\\textrm { prime}\\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240401120835823-0350:S0308210524000428:S0308210524000428_inline2.png\"/></span></span> for any <span><span><span data-mathjax-type=\"texmath\"><span>$h\\in \\mathbb {Z}\\backslash \\{0\\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240401120835823-0350:S0308210524000428:S0308210524000428_inline3.png\"/></span></span>, provided a necessary congruence condition is satisfied. We also prove that this is true for any subset of the primes of relative positive density, provided a necessary congruence condition is satisfied.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"47 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.42","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that any positive rational number is the sum of distinct unit fractions with denominators in $\{p-1 : p\textrm { prime}\}$Abstract Image. The same conclusion holds for the set $\{p-h : p\textrm { prime}\}$Abstract Image for any $h\in \mathbb {Z}\backslash \{0\}$Abstract Image, provided a necessary congruence condition is satisfied. We also prove that this is true for any subset of the primes of relative positive density, provided a necessary congruence condition is satisfied.

有移码质数分母的单位分数
我们证明任何有理正数都是分母在 $\{p-1 : p\textrm { prime}\}$ 中的不同单位分数之和。对于在 \mathbb {Z}\backslash \{0\}$中的任何$h,只要满足必要的全等条件,集合$\{p-h : p\textrm { prime}\}$ 也有同样的结论。我们还证明,只要满足必要的全等条件,这对于任何相对正密度的素数子集都是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信