Unconditional convergence of eigenfunction expansions for abstract and elliptic operators

IF 1.3 3区 数学 Q1 MATHEMATICS
Vladimir Mikhailets, Aleksandr Murach
{"title":"Unconditional convergence of eigenfunction expansions for abstract and elliptic operators","authors":"Vladimir Mikhailets, Aleksandr Murach","doi":"10.1017/prm.2024.40","DOIUrl":null,"url":null,"abstract":"We study the most general class of eigenfunction expansions for abstract normal operators with pure point spectrum in a complex Hilbert space. We find sufficient conditions for such expansions to be unconditionally convergent in spaces with two norms and also estimate the degree of this convergence. Our result essentially generalizes and complements the known theorems of Krein and of Krasnosel'skiĭ and Pustyl'nik. We apply it to normal elliptic pseudodifferential operators on compact boundaryless <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C^{\\infty }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000404_inline1.png\" /> </jats:alternatives> </jats:inline-formula>-manifolds. We find generic conditions for eigenfunction expansions induced by such operators to converge unconditionally in the Sobolev spaces <jats:inline-formula> <jats:alternatives> <jats:tex-math>$W^{\\ell }_{p}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000404_inline2.png\" /> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p&gt;2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000404_inline3.png\" /> </jats:alternatives> </jats:inline-formula> or in the spaces <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C^{\\ell }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000404_inline4.png\" /> </jats:alternatives> </jats:inline-formula> (specifically, for the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000404_inline5.png\" /> </jats:alternatives> </jats:inline-formula>-th mean or uniform convergence on the manifold). These conditions are sufficient and necessary for the indicated convergence on Sobolev or Hörmander function classes and are given in terms of parameters characterizing these classes. We also find estimates for the degree of the convergence on such function classes. These results are new even for differential operators on the circle and for multiple Fourier series.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"45 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.40","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the most general class of eigenfunction expansions for abstract normal operators with pure point spectrum in a complex Hilbert space. We find sufficient conditions for such expansions to be unconditionally convergent in spaces with two norms and also estimate the degree of this convergence. Our result essentially generalizes and complements the known theorems of Krein and of Krasnosel'skiĭ and Pustyl'nik. We apply it to normal elliptic pseudodifferential operators on compact boundaryless $C^{\infty }$ -manifolds. We find generic conditions for eigenfunction expansions induced by such operators to converge unconditionally in the Sobolev spaces $W^{\ell }_{p}$ with $p>2$ or in the spaces $C^{\ell }$ (specifically, for the $p$ -th mean or uniform convergence on the manifold). These conditions are sufficient and necessary for the indicated convergence on Sobolev or Hörmander function classes and are given in terms of parameters characterizing these classes. We also find estimates for the degree of the convergence on such function classes. These results are new even for differential operators on the circle and for multiple Fourier series.
抽象和椭圆算子特征函数展开的无条件收敛性
我们研究了复希尔伯特空间中具有纯点谱的抽象正则算子的最一般特征函数展开类。我们发现了此类展开在具有两个规范的空间中无条件收敛的充分条件,并估计了这种收敛的程度。我们的结果基本上概括并补充了 Krein 以及 Krasnosel'skiĭ 和 Pustyl'nik 的已知定理。我们把它应用于紧凑无界$C^{\infty }$ -manifolds 上的常椭圆伪微分算子。我们找到了由此类算子诱导的特征函数展开无条件收敛于 Sobolev 空间 $W^{\ell }_{p}$ 与 $p>2$ 或空间 $C^{\ell}$(特别是对于 $p$ -th 平均值或流形上的均匀收敛)的一般条件。这些条件对于索博廖夫函数或霍尔曼德函数类上的收敛是充分和必要的,并给出了这些类的特征参数。我们还找到了在这些函数类上收敛程度的估计值。即使对于圆上微分算子和多重傅里叶级数,这些结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信