Shape optimization for combinations of Steklov eigenvalues on Riemannian surfaces

IF 1 3区 数学 Q1 MATHEMATICS
Romain Petrides
{"title":"Shape optimization for combinations of Steklov eigenvalues on Riemannian surfaces","authors":"Romain Petrides","doi":"10.1007/s00209-024-03481-0","DOIUrl":null,"url":null,"abstract":"<p>We prove existence and regularity of metrics which minimize combinations of Steklov eigenvalues over metrics of unit perimeter on a surface with boundary. We show that there are free boundary minimal immersions into ellipsoids parametrized by eigenvalues, such that the coordinate functions are eigenfunctions with respect to the minimal metrics. This work generalizes Fraser–Schoen’s and the author’s maximization for one eigenvalue among metrics of unit perimeter on a surface giving free boundary minimal immersions into balls. We also generalize the previous results of critical metrics for one eigenvalue to any combination of eigenvalues from target balls to target ellipsoids.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03481-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove existence and regularity of metrics which minimize combinations of Steklov eigenvalues over metrics of unit perimeter on a surface with boundary. We show that there are free boundary minimal immersions into ellipsoids parametrized by eigenvalues, such that the coordinate functions are eigenfunctions with respect to the minimal metrics. This work generalizes Fraser–Schoen’s and the author’s maximization for one eigenvalue among metrics of unit perimeter on a surface giving free boundary minimal immersions into balls. We also generalize the previous results of critical metrics for one eigenvalue to any combination of eigenvalues from target balls to target ellipsoids.

黎曼曲面上斯特克洛夫特征值组合的形状优化
我们证明了有边界曲面上单位周长度量的斯特克洛夫特征值组合最小化度量的存在性和规则性。我们证明了存在以特征值为参数的椭圆体的自由边界最小浸入,从而坐标函数是关于最小度量的特征函数。这项工作推广了 Fraser-Schoen 和作者的最大化曲面上单位周长度量中的一个特征值,给出了球的自由边界最小浸入。我们还将以前的一个特征值的临界度量结果推广到从目标球到目标椭球的任何特征值组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信