The Josefson–Nissenzweig theorem and filters on \(\omega \)

IF 0.3 4区 数学 Q1 Arts and Humanities
Witold Marciszewski, Damian Sobota
{"title":"The Josefson–Nissenzweig theorem and filters on \\(\\omega \\)","authors":"Witold Marciszewski,&nbsp;Damian Sobota","doi":"10.1007/s00153-024-00920-x","DOIUrl":null,"url":null,"abstract":"<div><p>For a free filter <i>F</i> on <span>\\(\\omega \\)</span>, endow the space <span>\\(N_F=\\omega \\cup \\{p_F\\}\\)</span>, where <span>\\(p_F\\not \\in \\omega \\)</span>, with the topology in which every element of <span>\\(\\omega \\)</span> is isolated whereas all open neighborhoods of <span>\\(p_F\\)</span> are of the form <span>\\(A\\cup \\{p_F\\}\\)</span> for <span>\\(A\\in F\\)</span>. Spaces of the form <span>\\(N_F\\)</span> constitute the class of the simplest non-discrete Tychonoff spaces. The aim of this paper is to study them in the context of the celebrated Josefson–Nissenzweig theorem from Banach space theory. We prove, e.g., that, for a filter <i>F</i>, the space <span>\\(N_F\\)</span> carries a sequence <span>\\(\\langle \\mu _n:n\\in \\omega \\rangle \\)</span> of normalized finitely supported signed measures such that <span>\\(\\mu _n(f)\\rightarrow 0\\)</span> for every bounded continuous real-valued function <i>f</i> on <span>\\(N_F\\)</span> if and only if <span>\\(F^*\\le _K{\\mathcal {Z}}\\)</span>, that is, the dual ideal <span>\\(F^*\\)</span> is Katětov below the asymptotic density ideal <span>\\({\\mathcal {Z}}\\)</span>. Consequently, we get that if <span>\\(F^*\\le _K{\\mathcal {Z}}\\)</span>, then: (1) if <i>X</i> is a Tychonoff space and <span>\\(N_F\\)</span> is homeomorphic to a subspace of <i>X</i>, then the space <span>\\(C_p^*(X)\\)</span> of bounded continuous real-valued functions on <i>X</i> contains a complemented copy of the space <span>\\(c_0\\)</span> endowed with the pointwise topology, (2) if <i>K</i> is a compact Hausdorff space and <span>\\(N_F\\)</span> is homeomorphic to a subspace of <i>K</i>, then the Banach space <i>C</i>(<i>K</i>) of continuous real-valued functions on <i>K</i> is not a Grothendieck space. The latter result generalizes the well-known fact stating that if a compact Hausdorff space <i>K</i> contains a non-trivial convergent sequence, then the space <i>C</i>(<i>K</i>) is not Grothendieck.\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00920-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00920-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

For a free filter F on \(\omega \), endow the space \(N_F=\omega \cup \{p_F\}\), where \(p_F\not \in \omega \), with the topology in which every element of \(\omega \) is isolated whereas all open neighborhoods of \(p_F\) are of the form \(A\cup \{p_F\}\) for \(A\in F\). Spaces of the form \(N_F\) constitute the class of the simplest non-discrete Tychonoff spaces. The aim of this paper is to study them in the context of the celebrated Josefson–Nissenzweig theorem from Banach space theory. We prove, e.g., that, for a filter F, the space \(N_F\) carries a sequence \(\langle \mu _n:n\in \omega \rangle \) of normalized finitely supported signed measures such that \(\mu _n(f)\rightarrow 0\) for every bounded continuous real-valued function f on \(N_F\) if and only if \(F^*\le _K{\mathcal {Z}}\), that is, the dual ideal \(F^*\) is Katětov below the asymptotic density ideal \({\mathcal {Z}}\). Consequently, we get that if \(F^*\le _K{\mathcal {Z}}\), then: (1) if X is a Tychonoff space and \(N_F\) is homeomorphic to a subspace of X, then the space \(C_p^*(X)\) of bounded continuous real-valued functions on X contains a complemented copy of the space \(c_0\) endowed with the pointwise topology, (2) if K is a compact Hausdorff space and \(N_F\) is homeomorphic to a subspace of K, then the Banach space C(K) of continuous real-valued functions on K is not a Grothendieck space. The latter result generalizes the well-known fact stating that if a compact Hausdorff space K contains a non-trivial convergent sequence, then the space C(K) is not Grothendieck.

约瑟夫森-尼森茨威格定理和 $$\omega $$ 上的滤波器
对于 \(omega \) 上的自由滤波器 F,赋予空间 \(N_F=\omega \cup \{p_F\}\),其中 \(p_F\not \in \omega \)具有拓扑结构,其中 \(omega \)的每个元素都是孤立的,而 \(p_F\) 的所有开放邻域对于 \(A\in F\) 都是 \(A\cup \{p_F\}\)形式。形式为 \(N_F\) 的空间构成了一类最简单的非离散的泰克诺夫空间。本文的目的是结合巴拿赫空间理论中著名的约瑟夫森-尼森茨韦格定理来研究它们。例如,我们证明对于滤波器 F,空间 \(N_F\) 携带一个序列 \(\langle \mu _n:如果并且只有当 \(F^*\le _K{mathcal {Z}}\)时,对于\(N_F\)上的每一个有界连续实值函数f来说,这样的有符号度量序列就是 \(\mu _n(f)\rightarrow 0\) of normalized finitely supported signed measures such that \(\mu _n(f)\rightarrow 0\) for every bounded continuous real-valued function f on \(N_F\)、也就是说,对偶理想 \(F^*\) 在渐近密度理想 \({\mathcal {Z}}\) 的下面。因此,我们可以得到,如果 \(F^*\le _K{\mathcal {Z}}\), then:(1) 如果 X 是一个 Tychonoff 空间,并且 \(N_F\) 与 X 的子空间同构,那么 X 上有界连续实值函数的空间 \(C_p^*(X)\) 包含了空间 \(c_0\) 的一个互补副本,该空间被赋予了点拓扑学、(2) 如果 K 是一个紧凑的 Hausdorff 空间,并且 \(N_F\) 与 K 的子空间同构,那么 K 上连续实值函数的巴拿赫空间 C(K) 不是格罗内迪克空间。后一个结果概括了一个众所周知的事实,即如果一个紧凑的 Hausdorff 空间 K 包含一个非三收敛序列,那么空间 C(K) 就不是格罗thendieck 空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信