Local Correction of Linear Functions over the Boolean Cube

Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srinivasan, Madhu Sudan
{"title":"Local Correction of Linear Functions over the Boolean Cube","authors":"Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srinivasan, Madhu Sudan","doi":"arxiv-2403.20305","DOIUrl":null,"url":null,"abstract":"We consider the task of locally correcting, and locally list-correcting,\nmultivariate linear functions over the domain $\\{0,1\\}^n$ over arbitrary fields\nand more generally Abelian groups. Such functions form error-correcting codes\nof relative distance $1/2$ and we give local-correction algorithms correcting\nup to nearly $1/4$-fraction errors making $\\widetilde{\\mathcal{O}}(\\log n)$\nqueries. This query complexity is optimal up to $\\mathrm{poly}(\\log\\log n)$\nfactors. We also give local list-correcting algorithms correcting $(1/2 -\n\\varepsilon)$-fraction errors with $\\widetilde{\\mathcal{O}}_{\\varepsilon}(\\log\nn)$ queries. These results may be viewed as natural generalizations of the classical work\nof Goldreich and Levin whose work addresses the special case where the\nunderlying group is $\\mathbb{Z}_2$. By extending to the case where the\nunderlying group is, say, the reals, we give the first non-trivial locally\ncorrectable codes (LCCs) over the reals (with query complexity being sublinear\nin the dimension (also known as message length)). The central challenge in constructing the local corrector is constructing\n``nearly balanced vectors'' over $\\{-1,1\\}^n$ that span $1^n$ -- we show how to\nconstruct $\\mathcal{O}(\\log n)$ vectors that do so, with entries in each vector\nsumming to $\\pm1$. The challenge to the local-list-correction algorithms, given\nthe local corrector, is principally combinatorial, i.e., in proving that the\nnumber of linear functions within any Hamming ball of radius\n$(1/2-\\varepsilon)$ is $\\mathcal{O}_{\\varepsilon}(1)$. Getting this general\nresult covering every Abelian group requires integrating a variety of known\nmethods with some new combinatorial ingredients analyzing the structural\nproperties of codewords that lie within small Hamming balls.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.20305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain $\{0,1\}^n$ over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance $1/2$ and we give local-correction algorithms correcting up to nearly $1/4$-fraction errors making $\widetilde{\mathcal{O}}(\log n)$ queries. This query complexity is optimal up to $\mathrm{poly}(\log\log n)$ factors. We also give local list-correcting algorithms correcting $(1/2 - \varepsilon)$-fraction errors with $\widetilde{\mathcal{O}}_{\varepsilon}(\log n)$ queries. These results may be viewed as natural generalizations of the classical work of Goldreich and Levin whose work addresses the special case where the underlying group is $\mathbb{Z}_2$. By extending to the case where the underlying group is, say, the reals, we give the first non-trivial locally correctable codes (LCCs) over the reals (with query complexity being sublinear in the dimension (also known as message length)). The central challenge in constructing the local corrector is constructing ``nearly balanced vectors'' over $\{-1,1\}^n$ that span $1^n$ -- we show how to construct $\mathcal{O}(\log n)$ vectors that do so, with entries in each vector summing to $\pm1$. The challenge to the local-list-correction algorithms, given the local corrector, is principally combinatorial, i.e., in proving that the number of linear functions within any Hamming ball of radius $(1/2-\varepsilon)$ is $\mathcal{O}_{\varepsilon}(1)$. Getting this general result covering every Abelian group requires integrating a variety of known methods with some new combinatorial ingredients analyzing the structural properties of codewords that lie within small Hamming balls.
布尔立方上线性函数的局部修正
我们考虑的任务是对任意域和更广义的阿贝尔群的域 $\{0,1\}^n$ 上的多元线性函数进行局部纠错和局部列表纠错。这些函数形成了相对距离为 1/2$ 的纠错码,我们给出了局部纠错算法,可以在$\widetilde{\mathcal{O}}(\log n)$查询中纠正近 1/4$ 分数的错误。这种查询复杂度在 $\mathrm{poly}(\log\log n)$因子以内都是最优的。我们还给出了用 $\widetilde {\mathcal{O}}_{\varepsilon}(\logn)$ 查询纠正 $(1/2 -\varepsilon)$ 分数错误的局部列表纠正算法。这些结果可以被看作是戈德赖希和列文经典工作的自然概括,他们的工作针对的是底层群为 $\mathbb{Z}_2$ 的特殊情况。通过扩展到底层群是实数的情况,我们给出了第一个实数上的非难局部可纠错码(LCC)(查询复杂度是维数(也称为信息长度)的亚线性)。构建局部校正器的核心挑战是在$\{-1,1\}^n$上构建跨度为1^n$的 "近乎平衡向量"--我们展示了如何构建这样的$\mathcal{O}(\log n)$向量,每个向量中的条目总和为$\pm1$。给定局部校正器后,局部列表校正算法面临的挑战主要是组合方面的,即证明在半径为$(1/2-\varepsilon)$的任何汉明球内的线性函数个数为$\mathcal{O}_{\varepsilon}(1)$。要得到这个涵盖所有阿贝尔群的一般结果,需要将各种已知方法与一些新的组合成分结合起来,分析位于小汉明球内的编码词的结构特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信