Pseudoentanglement Ain't Cheap

Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang
{"title":"Pseudoentanglement Ain't Cheap","authors":"Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang","doi":"arxiv-2404.00126","DOIUrl":null,"url":null,"abstract":"We show that any pseudoentangled state ensemble with a gap of $t$ bits of\nentropy requires $\\Omega(t)$ non-Clifford gates to prepare. This bound is tight\nup to polylogarithmic factors if linear-time quantum-secure pseudorandom\nfunctions exist. Our result follows from a polynomial-time algorithm to\nestimate the entanglement entropy of a quantum state across any cut of qubits.\nWhen run on an $n$-qubit state that is stabilized by at least $2^{n-t}$ Pauli\noperators, our algorithm produces an estimate that is within an additive factor\nof $\\frac{t}{2}$ bits of the true entanglement entropy.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that any pseudoentangled state ensemble with a gap of $t$ bits of entropy requires $\Omega(t)$ non-Clifford gates to prepare. This bound is tight up to polylogarithmic factors if linear-time quantum-secure pseudorandom functions exist. Our result follows from a polynomial-time algorithm to estimate the entanglement entropy of a quantum state across any cut of qubits. When run on an $n$-qubit state that is stabilized by at least $2^{n-t}$ Pauli operators, our algorithm produces an estimate that is within an additive factor of $\frac{t}{2}$ bits of the true entanglement entropy.
伪量子纠缠并不便宜
我们证明,任何具有 $t$ 比特熵间隙的伪纠缠态集合都需要 $\Omega(t)$ 非克里福德门来准备。如果存在线性时间量子安全伪随机函数,那么这个约束会紧缩到多对数因子。我们的结果来自于一种多项式时间算法,它可以估算量子态在任意量子比特切割时的纠缠熵。当在一个至少由2^{n-t}$保利奥佩尔器稳定的$n$量子比特态上运行时,我们的算法产生的估算结果与真实纠缠熵的比特数在一个加系数$frac{t}{2}$之内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信