Random Reed-Solomon Codes are List Recoverable with Optimal List Size

Dean Doron, S. Venkitesh
{"title":"Random Reed-Solomon Codes are List Recoverable with Optimal List Size","authors":"Dean Doron, S. Venkitesh","doi":"arxiv-2404.00206","DOIUrl":null,"url":null,"abstract":"We prove that Reed-Solomon (RS) codes with random evaluation points are list\nrecoverable up to capacity with optimal output list size, for any input list\nsize. Namely, given an input list size $\\ell$, a designated rate $R$, and any\n$\\varepsilon > 0$, we show that a random RS code is list recoverable from\n$1-R-\\varepsilon$ fraction of errors with output list size $L =\nO(\\ell/\\varepsilon)$, for field size $q=\\exp(\\ell,1/\\varepsilon) \\cdot n^2$. In\nparticular, this shows that random RS codes are list recoverable beyond the\n``list recovery Johnson bound''. Such a result was not even known for arbitrary\nrandom linear codes. Our technique follows and extends the recent line of work\non list decoding of random RS codes, specifically the works of Brakensiek,\nGopi, and Makam (STOC 2023), and of Guo and Zhang (FOCS 2023).","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that Reed-Solomon (RS) codes with random evaluation points are list recoverable up to capacity with optimal output list size, for any input list size. Namely, given an input list size $\ell$, a designated rate $R$, and any $\varepsilon > 0$, we show that a random RS code is list recoverable from $1-R-\varepsilon$ fraction of errors with output list size $L = O(\ell/\varepsilon)$, for field size $q=\exp(\ell,1/\varepsilon) \cdot n^2$. In particular, this shows that random RS codes are list recoverable beyond the ``list recovery Johnson bound''. Such a result was not even known for arbitrary random linear codes. Our technique follows and extends the recent line of work on list decoding of random RS codes, specifically the works of Brakensiek, Gopi, and Makam (STOC 2023), and of Guo and Zhang (FOCS 2023).
随机里德-所罗门码可通过最佳列表大小进行列表恢复
我们证明,对于任意输入列表大小,具有随机评估点的里德-所罗门(RS)码都能以最佳输出列表大小进行列表恢复。也就是说,给定输入列表大小 $\ell$、指定速率 $R$、任意 $\varepsilon > 0$,我们证明了随机 RS 码在字段大小为 $q=\exp(\ell,1/\varepsilon) \cdot n^2$ 时,可以通过输出列表大小 $L =O(\ell/\varepsilon)$ 从 $1-R-\varepsilon$ 的错误中进行列表恢复。特别是,这表明随机 RS 编码的列表恢复能力超过了 "列表恢复约翰逊边界"。这样的结果甚至连任意随机线性编码都不知道。我们的技术继承并扩展了最近关于随机 RS 码列表解码的工作,特别是 Brakensiek、Gopi 和 Makam(STOC 2023)以及 Guo 和 Zhang(FOCS 2023)的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信