Superpolynomial Lower Bounds for Smooth 3-LCCs and Sharp Bounds for Designs

Pravesh K. Kothari, Peter Manohar
{"title":"Superpolynomial Lower Bounds for Smooth 3-LCCs and Sharp Bounds for Designs","authors":"Pravesh K. Kothari, Peter Manohar","doi":"arxiv-2404.06513","DOIUrl":null,"url":null,"abstract":"We give improved lower bounds for binary $3$-query locally correctable codes\n(3-LCCs) $C \\colon \\{0,1\\}^k \\rightarrow \\{0,1\\}^n$. Specifically, we prove: (1) If $C$ is a linear design 3-LCC, then $n \\geq 2^{(1 - o(1))\\sqrt{k} }$. A\ndesign 3-LCC has the additional property that the correcting sets for every\ncodeword bit form a perfect matching and every pair of codeword bits is queried\nan equal number of times across all matchings. Our bound is tight up to a\nfactor $\\sqrt{8}$ in the exponent of $2$, as the best construction of binary\n$3$-LCCs (obtained by taking Reed-Muller codes on $\\mathbb{F}_4$ and applying a\nnatural projection map) is a design $3$-LCC with $n \\leq 2^{\\sqrt{8 k}}$. Up to\na $\\sqrt{8}$ factor, this resolves the Hamada conjecture on the maximum\n$\\mathbb{F}_2$-codimension of a $4$-design. (2) If $C$ is a smooth, non-linear $3$-LCC with near-perfect completeness,\nthen, $n \\geq k^{\\Omega(\\log k)}$. (3) If $C$ is a smooth, non-linear $3$-LCC with completeness $1 -\n\\varepsilon$, then $n \\geq \\tilde{\\Omega}(k^{\\frac{1}{2\\varepsilon}})$. In\nparticular, when $\\varepsilon$ is a small constant, this implies a lower bound\nfor general non-linear LCCs that beats the prior best $n \\geq\n\\tilde{\\Omega}(k^3)$ lower bound of [AGKM23] by a polynomial factor. Our design LCC lower bound is obtained via a fine-grained analysis of the\nKikuchi matrix method applied to a variant of the matrix used in [KM23]. Our\nlower bounds for non-linear codes are obtained by designing a from-scratch\nreduction from nonlinear $3$-LCCs to a system of \"chain polynomial equations\":\npolynomial equations with similar structure to the long chain derivations that\narise in the lower bounds for linear $3$-LCCs [KM23].","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.06513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give improved lower bounds for binary $3$-query locally correctable codes (3-LCCs) $C \colon \{0,1\}^k \rightarrow \{0,1\}^n$. Specifically, we prove: (1) If $C$ is a linear design 3-LCC, then $n \geq 2^{(1 - o(1))\sqrt{k} }$. A design 3-LCC has the additional property that the correcting sets for every codeword bit form a perfect matching and every pair of codeword bits is queried an equal number of times across all matchings. Our bound is tight up to a factor $\sqrt{8}$ in the exponent of $2$, as the best construction of binary $3$-LCCs (obtained by taking Reed-Muller codes on $\mathbb{F}_4$ and applying a natural projection map) is a design $3$-LCC with $n \leq 2^{\sqrt{8 k}}$. Up to a $\sqrt{8}$ factor, this resolves the Hamada conjecture on the maximum $\mathbb{F}_2$-codimension of a $4$-design. (2) If $C$ is a smooth, non-linear $3$-LCC with near-perfect completeness, then, $n \geq k^{\Omega(\log k)}$. (3) If $C$ is a smooth, non-linear $3$-LCC with completeness $1 - \varepsilon$, then $n \geq \tilde{\Omega}(k^{\frac{1}{2\varepsilon}})$. In particular, when $\varepsilon$ is a small constant, this implies a lower bound for general non-linear LCCs that beats the prior best $n \geq \tilde{\Omega}(k^3)$ lower bound of [AGKM23] by a polynomial factor. Our design LCC lower bound is obtained via a fine-grained analysis of the Kikuchi matrix method applied to a variant of the matrix used in [KM23]. Our lower bounds for non-linear codes are obtained by designing a from-scratch reduction from nonlinear $3$-LCCs to a system of "chain polynomial equations": polynomial equations with similar structure to the long chain derivations that arise in the lower bounds for linear $3$-LCCs [KM23].
光滑 3-LCC 的超多项式下界和设计的锐界
我们给出了二进制 3 元查询局部可纠正码(3-LCC)$C \colon \{0,1\}^k \rightarrow \{0,1\}^n$ 的改进下限。具体来说,我们证明: (1) 如果 $C$ 是线性设计的 3-LCC,那么 $n \geq 2^{(1 - o(1))\sqrt{k} }$ 。}$.线性设计 3-LCC 还有一个特性,即每个码元位的校正集都会形成完美匹配,而且在所有匹配中,每对码元位都会被查询相同的次数。由于二进制$3$-LCC 的最佳构造(通过在$mathbb{F}_4$上提取里德-穆勒编码并应用自然投影图获得)是一个设计$3$-LCC,其中有$n \leq 2^{\sqrt{8 k}}$。这解决了滨田猜想中关于$4$设计的最大$mathbb{F}_2$维数的问题。(2) 如果 $C$ 是一个平滑的、非线性的、具有近乎完美完备性的$3$-LCC,那么,$n \geq k^{Omega(\log k)}$.(3) 如果$C$是一个光滑的、非线性的$3$-LCC,其完备性为$1 -\varepsilon$, 那么,$n (geq \tilde{Omega}(k^{frac{1}{2\varepsilon}})$。特别是,当 $\varepsilon$ 是一个小常数时,这意味着一般非线性 LCC 的下界比 [AGKM23] 的先前最佳 $n \geq\tilde\{Omega}(k^3)$ 下界高出一个多项式系数。我们的设计 LCC 下界是通过对应用于 [KM23] 所用矩阵变体的菊池矩阵法进行细粒度分析而得到的。我们的非线性编码下界是通过设计一个从零开始的还原方法,将非线性 3 美元-LCC 简化为一个 "链多项式方程 "系统而获得的:多项式方程的结构与线性 3 美元-LCC 下界[KM23]中出现的长链推导相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信