Locally free Caldero–Chapoton functions via reflections

IF 1 3区 数学 Q1 MATHEMATICS
Lang Mou
{"title":"Locally free Caldero–Chapoton functions via reflections","authors":"Lang Mou","doi":"10.1007/s00209-024-03483-y","DOIUrl":null,"url":null,"abstract":"<p>We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03483-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations.

Abstract Image

通过反射的局部自由卡尔德罗-夏波顿函数
我们研究了与 Geiß-Leclerc-Schröer's quivers 表征相关的局部自由 Caldero-Chapoton 函数的反射,这些表征具有可对称 Cartan 矩阵的关系。我们证明,对于秩2簇代数,非初始簇变量可以表达为局部自由不可分解刚性表示的局部自由卡尔德罗-夏波顿函数。我们的方法为盖斯-勒克莱尔-施罗尔(Geiß-Leclerc-Schröer)在Dynkin情况下得到的局部自由卡尔德罗-夏波顿公式提供了新的证明。对于一般的非循环偏斜对称簇代数,我们证明了通过几乎汇和源突变得到的任何非初始簇变量的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信