Threshold Graphs with an Arbitrary Large Gap Set

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abdullah Alazemi, Milica Anđelić, Haneen Zaidan
{"title":"Threshold Graphs with an Arbitrary Large Gap Set","authors":"Abdullah Alazemi, Milica Anđelić, Haneen Zaidan","doi":"10.1007/s40840-024-01680-w","DOIUrl":null,"url":null,"abstract":"<p>An interval in which a given graph has no eigenvalues is called a gap interval. We show that for any real number <i>R</i> greater than <span>\\(\\frac{1}{2}(-1+\\sqrt{2})\\)</span>, there exist infinitely many threshold graphs with gap interval (0, <i>R</i>). We provide a new recurrence relation for computing the characteristic polynomial of the threshold graphs and based on it, we conclude that the sequence of the least positive (resp. largest negative) eigenvalues of a certain sequence of threshold graphs is convergent. In some particular cases, we compute the limit points.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01680-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An interval in which a given graph has no eigenvalues is called a gap interval. We show that for any real number R greater than \(\frac{1}{2}(-1+\sqrt{2})\), there exist infinitely many threshold graphs with gap interval (0, R). We provide a new recurrence relation for computing the characteristic polynomial of the threshold graphs and based on it, we conclude that the sequence of the least positive (resp. largest negative) eigenvalues of a certain sequence of threshold graphs is convergent. In some particular cases, we compute the limit points.

Abstract Image

具有任意大间隙集的阈值图
一个给定图形没有特征值的区间被称为间隙区间。我们证明,对于大于 \(\frac{1}{2}(-1+\sqrt{2})\)的任意实数 R,存在无限多个间隙区间为(0,R)的阈值图。我们为计算阈值图的特征多项式提供了一种新的递推关系,并基于这种关系得出结论:某个阈值图序列的最小正(或最大负)特征值序列是收敛的。在某些特殊情况下,我们会计算极限点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信