Modelling chloride diffusion in concrete with carbonated surface layer

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Ping Li, Chuanfei Li, Dawang Li, Runhao Chen, Jinghong Chen
{"title":"Modelling chloride diffusion in concrete with carbonated surface layer","authors":"Ping Li, Chuanfei Li, Dawang Li, Runhao Chen, Jinghong Chen","doi":"10.1680/jmacr.23.00202","DOIUrl":null,"url":null,"abstract":"Due to the demand for carbon neutrality, concrete carbonation has been reconsidered as an interesting topic because of its potential for capturing CO<sub>2</sub> from the atmosphere. Concrete carbonation can significantly modify the chemical and microstructure properties of concrete and thus will have important effects on chloride diffusion. This paper presents a chloride diffusion model in which the concrete cover is divided into three different zones, each with their own defined porosity and chloride binding isotherm. One is the fully carbonated concrete near the surface, where the porosity and chloride binding isotherm can be obtained from the experimental data of fully carbonated concrete. One is the uncarbonated concrete near the reinforcement, where the porosity and chloride binding isotherm can be obtained from the experimental data of normal concrete. One is the transition zone between the fully carbonated and uncarbonated concretes, where the porosity and chloride binding isotherm can be assumed to vary continuously from the carbonated concrete to uncarbonated concrete. To validate the present model, the comparison of the present model with published experimental results is also provided, which demonstrates the importance of considering different zones in chloride diffusion model when the concrete has a carbonated layer near the surface.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the demand for carbon neutrality, concrete carbonation has been reconsidered as an interesting topic because of its potential for capturing CO2 from the atmosphere. Concrete carbonation can significantly modify the chemical and microstructure properties of concrete and thus will have important effects on chloride diffusion. This paper presents a chloride diffusion model in which the concrete cover is divided into three different zones, each with their own defined porosity and chloride binding isotherm. One is the fully carbonated concrete near the surface, where the porosity and chloride binding isotherm can be obtained from the experimental data of fully carbonated concrete. One is the uncarbonated concrete near the reinforcement, where the porosity and chloride binding isotherm can be obtained from the experimental data of normal concrete. One is the transition zone between the fully carbonated and uncarbonated concretes, where the porosity and chloride binding isotherm can be assumed to vary continuously from the carbonated concrete to uncarbonated concrete. To validate the present model, the comparison of the present model with published experimental results is also provided, which demonstrates the importance of considering different zones in chloride diffusion model when the concrete has a carbonated layer near the surface.
带有碳化表层的混凝土中氯离子扩散模型
由于对碳中和的需求,混凝土碳化因其从大气中捕捉二氧化碳的潜力而被重新视为一个有趣的话题。混凝土碳化会极大地改变混凝土的化学和微观结构特性,从而对氯化物的扩散产生重要影响。本文提出了一种氯化物扩散模型,将混凝土覆盖层分为三个不同的区域,每个区域都有自己定义的孔隙率和氯化物结合等温线。一个是表面附近的完全碳化混凝土,其孔隙率和氯化物结合等温线可从完全碳化混凝土的实验数据中获得。一种是钢筋附近的未碳化混凝土,其孔隙率和氯化物结合等温线可从普通混凝土的实验数据中获得。一个是完全碳化混凝土和未碳化混凝土之间的过渡区,可假定该区域的孔隙率和氯化物结合等温线从碳化混凝土到未碳化混凝土连续变化。为了验证本模型,还将本模型与已公布的实验结果进行了比较,结果表明,当混凝土表面附近有碳化层时,在氯化物扩散模型中考虑不同区域的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信