{"title":"Steiner Cut Dominants","authors":"Michele Conforti, Volker Kaibel","doi":"10.1287/moor.2022.0280","DOIUrl":null,"url":null,"abstract":"For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.