{"title":"Identity-Preserving Adversarial Training for Robust Network Embedding","authors":"Ke-Ting Cen, Hua-Wei Shen, Qi Cao, Bing-Bing Xu, Xue-Qi Cheng","doi":"10.1007/s11390-023-2256-4","DOIUrl":null,"url":null,"abstract":"<p>Network embedding, as an approach to learning low-dimensional representations of nodes, has been proved extremely useful in many applications, e.g., node classification and link prediction. Unfortunately, existing network embedding models are vulnerable to random or adversarial perturbations, which may degrade the performance of network embedding when being applied to downstream tasks. To achieve robust network embedding, researchers introduce adversarial training to regularize the embedding learning process by training on a mixture of adversarial examples and original examples. However, existing methods generate adversarial examples heuristically, failing to guarantee the imperceptibility of generated adversarial examples, and thus limit the power of adversarial training. In this paper, we propose a novel method Identity-Preserving Adversarial Training (IPAT) for network embedding, which generates imperceptible adversarial examples with explicit identity-preserving regularization. We formalize such identity-preserving regularization as a multi-class classification problem where each node represents a class, and we encourage each adversarial example to be discriminated as the class of its original node. Extensive experimental results on real-world datasets demonstrate that our proposed IPAT method significantly improves the robustness of network embedding models and the generalization of the learned node representations on various downstream tasks.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"140 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-2256-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Network embedding, as an approach to learning low-dimensional representations of nodes, has been proved extremely useful in many applications, e.g., node classification and link prediction. Unfortunately, existing network embedding models are vulnerable to random or adversarial perturbations, which may degrade the performance of network embedding when being applied to downstream tasks. To achieve robust network embedding, researchers introduce adversarial training to regularize the embedding learning process by training on a mixture of adversarial examples and original examples. However, existing methods generate adversarial examples heuristically, failing to guarantee the imperceptibility of generated adversarial examples, and thus limit the power of adversarial training. In this paper, we propose a novel method Identity-Preserving Adversarial Training (IPAT) for network embedding, which generates imperceptible adversarial examples with explicit identity-preserving regularization. We formalize such identity-preserving regularization as a multi-class classification problem where each node represents a class, and we encourage each adversarial example to be discriminated as the class of its original node. Extensive experimental results on real-world datasets demonstrate that our proposed IPAT method significantly improves the robustness of network embedding models and the generalization of the learned node representations on various downstream tasks.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas