Design of constant-force mechanisms using origami

IF 2.1 4区 工程技术
Junfeng Hu, Hao Pan
{"title":"Design of constant-force mechanisms using origami","authors":"Junfeng Hu, Hao Pan","doi":"10.1177/16878132241241475","DOIUrl":null,"url":null,"abstract":"The origami mechanisms possess numerous unique advantages, including folding, reconfigurability, and multi-stability. The presence of multi-stability introduces a novel concept for the design of constant force mechanisms (CFM). In this study, we present a CFM with multi-segment constant-force regions by leveraging the multi-stable characteristics of the origami mechanism. The design principle behind this CFM involves combining an accordion origami structure with positive stiffness and a Kresling origami structure with multi-segment negative stiffness regions. To achieve zero stiffness, the Kresling origami structure is aligned parallel to the accordion origami. To effectively utilize both the Kresling and accordion origamis, we have established a mechanical model that describes their respective stiffness characteristics to establish design rules for the constant-force mechanism. By carefully designing the parameters of these two origami structures, we evaluate how variations in the structural parameters of Kresling influence the constant force properties of our proposed multi-segment CFM. To illustrate its inherent property of providing constant force across multiple segments, we employ finite element analysis and experiments to obtain force-displacement curves for our mechanism. The results demonstrate the feasibility of our presented design method which paves the way for constructing a simple CFM.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241241475","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The origami mechanisms possess numerous unique advantages, including folding, reconfigurability, and multi-stability. The presence of multi-stability introduces a novel concept for the design of constant force mechanisms (CFM). In this study, we present a CFM with multi-segment constant-force regions by leveraging the multi-stable characteristics of the origami mechanism. The design principle behind this CFM involves combining an accordion origami structure with positive stiffness and a Kresling origami structure with multi-segment negative stiffness regions. To achieve zero stiffness, the Kresling origami structure is aligned parallel to the accordion origami. To effectively utilize both the Kresling and accordion origamis, we have established a mechanical model that describes their respective stiffness characteristics to establish design rules for the constant-force mechanism. By carefully designing the parameters of these two origami structures, we evaluate how variations in the structural parameters of Kresling influence the constant force properties of our proposed multi-segment CFM. To illustrate its inherent property of providing constant force across multiple segments, we employ finite element analysis and experiments to obtain force-displacement curves for our mechanism. The results demonstrate the feasibility of our presented design method which paves the way for constructing a simple CFM.
利用折纸设计恒力机构
折纸机构具有众多独特优势,包括可折叠、可重新配置和多稳定性。多稳定性的存在为恒力机构(CFM)的设计引入了一个新概念。在本研究中,我们利用折纸机构的多稳定性特点,提出了一种具有多段恒力区域的 CFM。这种恒力机构的设计原理是将具有正刚度的手风琴折纸结构与具有多段负刚度区域的克瑞斯林折纸结构相结合。为了实现零刚度,克瑞斯林折纸结构与风琴折纸平行排列。为了有效利用克瑞斯林折纸和手风琴折纸,我们建立了一个机械模型来描述它们各自的刚度特性,从而为恒力机构制定设计规则。通过精心设计这两种折纸结构的参数,我们评估了克瑞斯林结构参数的变化如何影响我们提出的多段 CFM 的恒力特性。为了说明多段 CFM 提供恒力的固有特性,我们采用了有限元分析和实验来获得我们的机构的力-位移曲线。结果证明了我们提出的设计方法的可行性,为构建简单的 CFM 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信