{"title":"Evaluating the sales potential of new products using machine learning techniques and data collected from mobile applications","authors":"Rita Sleiman, Quoc-Thông Nguyen, Sandra Lacaze, Kim-Phuc Tran, Sébastien Thomassey","doi":"10.1108/ijcst-07-2023-0099","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>We propose a machine learning based methodology to deal with data collected from a mobile application asking users their opinion regarding fashion products. Based on different machine learning techniques, the proposed approach relies on the data value chain principle to enrich data into knowledge, insights and learning experience.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Online interaction and the usage of social media have dramatically altered both consumers’ behaviors and business practices. Companies invest in social media platforms and digital marketing in order to increase their brand awareness and boost their sales. Especially for fashion retailers, understanding consumers’ behavior before launching a new collection is crucial to reduce overstock situations. In this study, we aim at providing retailers better understand consumers’ different assessments of newly introduced products.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>By creating new product-related and user-related attributes, the proposed prediction model attends an average of 70.15% accuracy when evaluating the potential success of new future products during the design process of the collection. Results showed that by harnessing artificial intelligence techniques, along with social media data and mobile apps, new ways of interacting with clients and understanding their preferences are established.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>From a practical point of view, the proposed approach helps businesses better target their marketing campaigns, localize their potential clients and adjust manufactured quantities.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The originality of the proposed approach lies in (1) the implementation of the data value chain principle to enhance the information of raw data collected from mobile apps and improve the prediction model performances, and (2) the combination consumer and product attributes to provide an accurate prediction of new fashion, products.</p><!--/ Abstract__block -->","PeriodicalId":50330,"journal":{"name":"International Journal of Clothing Science and Technology","volume":"319 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clothing Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ijcst-07-2023-0099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
We propose a machine learning based methodology to deal with data collected from a mobile application asking users their opinion regarding fashion products. Based on different machine learning techniques, the proposed approach relies on the data value chain principle to enrich data into knowledge, insights and learning experience.
Design/methodology/approach
Online interaction and the usage of social media have dramatically altered both consumers’ behaviors and business practices. Companies invest in social media platforms and digital marketing in order to increase their brand awareness and boost their sales. Especially for fashion retailers, understanding consumers’ behavior before launching a new collection is crucial to reduce overstock situations. In this study, we aim at providing retailers better understand consumers’ different assessments of newly introduced products.
Findings
By creating new product-related and user-related attributes, the proposed prediction model attends an average of 70.15% accuracy when evaluating the potential success of new future products during the design process of the collection. Results showed that by harnessing artificial intelligence techniques, along with social media data and mobile apps, new ways of interacting with clients and understanding their preferences are established.
Practical implications
From a practical point of view, the proposed approach helps businesses better target their marketing campaigns, localize their potential clients and adjust manufactured quantities.
Originality/value
The originality of the proposed approach lies in (1) the implementation of the data value chain principle to enhance the information of raw data collected from mobile apps and improve the prediction model performances, and (2) the combination consumer and product attributes to provide an accurate prediction of new fashion, products.
期刊介绍:
Addresses all aspects of the science and technology of clothing-objective measurement techniques, control of fibre and fabric, CAD systems, product testing, sewing, weaving and knitting, inspection systems, drape and finishing, etc. Academic and industrial research findings are published after a stringent review has taken place.