Integrability of Nonabelian Differential-Difference Equations: the Symmetry Approach

Vladimir Novikov, Jing Ping Wang
{"title":"Integrability of Nonabelian Differential-Difference Equations: the Symmetry Approach","authors":"Vladimir Novikov, Jing Ping Wang","doi":"arxiv-2404.02326","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to tackle integrability problem for evolutionary\ndifferential-difference equations (D$\\Delta$Es) on free associative algebras,\nalso referred to as nonabelian D$\\Delta$Es. This approach enables us to derive\nnecessary integrability conditions, determine the integrability of a given\nequation, and make progress in the classification of integrable nonabelian\nD$\\Delta$Es. This work involves establishing symbolic representations for the\nnonabelian difference algebra, difference operators, and formal series, as well\nas introducing a novel quasi-local extension for the algebra of formal series\nwithin the context of symbolic representations. Applying this formalism, we\nsolve the classification problem of integrable skew-symmetric quasi-linear\nnonabelian equations of orders $(-1,1)$, $(-2,2)$, and $(-3,3)$, consequently\nrevealing some new equations in the process.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel approach to tackle integrability problem for evolutionary differential-difference equations (D$\Delta$Es) on free associative algebras, also referred to as nonabelian D$\Delta$Es. This approach enables us to derive necessary integrability conditions, determine the integrability of a given equation, and make progress in the classification of integrable nonabelian D$\Delta$Es. This work involves establishing symbolic representations for the nonabelian difference algebra, difference operators, and formal series, as well as introducing a novel quasi-local extension for the algebra of formal series within the context of symbolic representations. Applying this formalism, we solve the classification problem of integrable skew-symmetric quasi-linear nonabelian equations of orders $(-1,1)$, $(-2,2)$, and $(-3,3)$, consequently revealing some new equations in the process.
非标微分方程的积分性:对称方法
我们提出了一种新方法来解决自由关联代数上的演化微分差分方程(D$\Delta$Es)的可整性问题,这种方程也被称为非阿贝尔D$\Delta$Es。这种方法使我们能够推导出必要的可整性条件,确定给定方程的可整性,并在可整性非阿贝尔D$$\Delta$Es的分类方面取得进展。这项工作包括为非标注差分代数、差分算子和形式数列建立符号表示,以及在符号表示的背景下为形式数列代数引入新的准局部扩展。应用这一形式主义,我们解决了阶$(-1,1)$、$(-2,2)$和$(-3,3)$的可积分偏对称准线性非阿贝尔方程的分类问题,并在此过程中揭示了一些新方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信