Inverse scattering transform for the coupled Lakshmanan-Porsezian-Daniel equation with nonzero boundary conditions

Peng-Fei Han, Ru-Suo Ye, Yi Zhang
{"title":"Inverse scattering transform for the coupled Lakshmanan-Porsezian-Daniel equation with nonzero boundary conditions","authors":"Peng-Fei Han, Ru-Suo Ye, Yi Zhang","doi":"arxiv-2404.03351","DOIUrl":null,"url":null,"abstract":"The challenge of solving the initial value problem for the coupled Lakshmanan\nPorsezian Daniel equation, while considering nonzero boundary conditions at\ninfinity, is addressed through the development of a suitable inverse scattering\ntransform. Analytical properties of the Jost eigenfunctions are examined, along\nwith the analysis of scattering coefficient characteristics. This analysis\nleads to the derivation of additional auxiliary eigenfunctions necessary for\nthe comprehensive investigation of the fundamental eigenfunctions. Two symmetry\nconditions are discussed to study the eigenfunctions and scattering\ncoefficients. These symmetry results are utilized to rigorously define the\ndiscrete spectrum and ascertain the corresponding symmetries of scattering\ndatas. The inverse scattering problem is formulated by the Riemann-Hilbert\nproblem. Then we can derive the exact solutions by coupled Lakshmanan Porsezian\nDaniel equation, the novel soliton solutions are derived and examined in\ndetail.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.03351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of solving the initial value problem for the coupled Lakshmanan Porsezian Daniel equation, while considering nonzero boundary conditions at infinity, is addressed through the development of a suitable inverse scattering transform. Analytical properties of the Jost eigenfunctions are examined, along with the analysis of scattering coefficient characteristics. This analysis leads to the derivation of additional auxiliary eigenfunctions necessary for the comprehensive investigation of the fundamental eigenfunctions. Two symmetry conditions are discussed to study the eigenfunctions and scattering coefficients. These symmetry results are utilized to rigorously define the discrete spectrum and ascertain the corresponding symmetries of scattering datas. The inverse scattering problem is formulated by the Riemann-Hilbert problem. Then we can derive the exact solutions by coupled Lakshmanan Porsezian Daniel equation, the novel soliton solutions are derived and examined in detail.
具有非零边界条件的拉克什曼-波尔齐安-丹尼尔耦合方程的反散射变换
通过开发一种合适的反散射变换,解决了在考虑无限处非零边界条件的同时求解耦合拉克什曼-波尔舍丹尼尔方程初值问题的难题。在分析散射系数特征的同时,研究了约斯特特征函数的分析特性。这一分析推导出了全面研究基本特征函数所需的附加辅助特征函数。在研究特征函数和散射系数时,讨论了两个对称条件。利用这些对称性结果来严格定义离散谱,并确定散射数据的相应对称性。反散射问题由黎曼-希尔伯特问题(Riemann-Hilbertproblem)提出。然后,我们可以通过耦合拉克什曼-波齐安-丹尼尔方程推导出精确解,并推导和详细研究了新的孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信