{"title":"The investigation of parameters affecting the treatment of synthetic bilge water by continuous electrooxidation/flotation process","authors":"Donya Akbarzadeh Yazdi, Alper Erdem Yilmaz, Sümeyye Güler, Okan Tarık Komesli","doi":"10.1111/wej.12921","DOIUrl":null,"url":null,"abstract":"This study addresses the pressing issue of bilge water pollution from ships, a highly oily and hazardous wastewater source. The research employs the electrooxidation/flotation process, known for its effectiveness in organic matter removal. Key parameters, such as initial pH, current density and flow rate, were investigated for their impact on the removal of chemical oxygen demand (COD) and oil-grease (OG) from bilge water. Initial pH showed minimal effects on COD and OG removal, while current density significantly enhanced removal efficiency by influencing anodic electrochemical reactions. Conversely, higher flow rates reduced residence time and lowered removal efficiency. Optimal conditions, with a current density of 10 mA/cm<sup>2</sup>, pH 7.5 and a flow rate of 20 ml/min, achieved impressive results, removing approximately 80% of COD and 99% of OG from bilge water. These findings highlight the potential of this method for effective bilge water purification.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"19 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12921","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the pressing issue of bilge water pollution from ships, a highly oily and hazardous wastewater source. The research employs the electrooxidation/flotation process, known for its effectiveness in organic matter removal. Key parameters, such as initial pH, current density and flow rate, were investigated for their impact on the removal of chemical oxygen demand (COD) and oil-grease (OG) from bilge water. Initial pH showed minimal effects on COD and OG removal, while current density significantly enhanced removal efficiency by influencing anodic electrochemical reactions. Conversely, higher flow rates reduced residence time and lowered removal efficiency. Optimal conditions, with a current density of 10 mA/cm2, pH 7.5 and a flow rate of 20 ml/min, achieved impressive results, removing approximately 80% of COD and 99% of OG from bilge water. These findings highlight the potential of this method for effective bilge water purification.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure