{"title":"Multi-objective Variational Curves","authors":"C. Yalçın Kaya, Lyle Noakes, Erchuan Zhang","doi":"10.1007/s10957-024-02427-0","DOIUrl":null,"url":null,"abstract":"<p>Riemannian cubics in tension are critical points of the linear combination of two objective functionals, namely the squared <span>\\(L^2\\)</span> norms of the velocity and acceleration of a curve on a Riemannian manifold. We view this variational problem of finding a curve as a multi-objective optimization problem and construct the Pareto fronts for some given instances where the manifold is a sphere and where the manifold is a torus. The Pareto front for the curves on the torus turns out to be particularly interesting: the front is disconnected and it reveals two distinct Riemannian cubics with the same boundary data, which is the first known nontrivial instance of this kind. We also discuss some convexity conditions involving the Pareto fronts for curves on general Riemannian manifolds.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02427-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Riemannian cubics in tension are critical points of the linear combination of two objective functionals, namely the squared \(L^2\) norms of the velocity and acceleration of a curve on a Riemannian manifold. We view this variational problem of finding a curve as a multi-objective optimization problem and construct the Pareto fronts for some given instances where the manifold is a sphere and where the manifold is a torus. The Pareto front for the curves on the torus turns out to be particularly interesting: the front is disconnected and it reveals two distinct Riemannian cubics with the same boundary data, which is the first known nontrivial instance of this kind. We also discuss some convexity conditions involving the Pareto fronts for curves on general Riemannian manifolds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.