{"title":"Treatment of Set-Valued Robustness via Separation and Scalarization","authors":"Madhusudan Das, Chandal Nahak, Mahendra Prasad Biswal","doi":"10.1007/s10957-024-02423-4","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to present alternative characterizations for different types of set-valued robustness concepts. Equivalent scalar representations for various set order relations are derived when the sets are the union of sets. Utilizing these findings in conjunction with image space analysis, specific isolated sets are defined for different notions of robust solutions. These isolated sets serve as the basis for deriving both necessary and sufficient robust optimality conditions. The validity of the results is demonstrated through several illustrative examples. Additionally, the paper concludes with an application of our present approach to two-player zero-sum matrix games.\n</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"3 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02423-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to present alternative characterizations for different types of set-valued robustness concepts. Equivalent scalar representations for various set order relations are derived when the sets are the union of sets. Utilizing these findings in conjunction with image space analysis, specific isolated sets are defined for different notions of robust solutions. These isolated sets serve as the basis for deriving both necessary and sufficient robust optimality conditions. The validity of the results is demonstrated through several illustrative examples. Additionally, the paper concludes with an application of our present approach to two-player zero-sum matrix games.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.