Computing N-dimensional polytrope via power series

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
Mohamed I. Nouh, Mahmoud Taha, Ahmed Ahmed Ibrahim, Mohamed Abdel-Sabour
{"title":"Computing N-dimensional polytrope via power series","authors":"Mohamed I. Nouh, Mahmoud Taha, Ahmed Ahmed Ibrahim, Mohamed Abdel-Sabour","doi":"10.1515/astro-2022-0230","DOIUrl":null,"url":null,"abstract":"Polytropic equations (Lane–Emden [LE] equations) are valuable because they offer a simple explanation for a star’s interior structure, interstellar matter, molecular clouds, and even spiral arms that can be calculated and used to estimate various physical parameters. Many analytical and numerical methods are used to solve the polytropic LE equation. The series expansion method played an essential role in many areas of science and has found application in many branches of physical science. This work uses the series expansion method to examine <jats:italic>N</jats:italic>-dimensional polytropes (<jats:italic>i.e.</jats:italic>, slab, cylinder, and sphere). To solve LE-type equations, a computational method based on accelerated series expansion (ASE) is applied. We calculate several models for the <jats:italic>N</jats:italic>-dimensional polytropes. The numerical results show good agreement between the ASE and numerical and analytical models of the <jats:italic>N</jats:italic>-dimensional polytropes.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"35 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0230","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Polytropic equations (Lane–Emden [LE] equations) are valuable because they offer a simple explanation for a star’s interior structure, interstellar matter, molecular clouds, and even spiral arms that can be calculated and used to estimate various physical parameters. Many analytical and numerical methods are used to solve the polytropic LE equation. The series expansion method played an essential role in many areas of science and has found application in many branches of physical science. This work uses the series expansion method to examine N-dimensional polytropes (i.e., slab, cylinder, and sphere). To solve LE-type equations, a computational method based on accelerated series expansion (ASE) is applied. We calculate several models for the N-dimensional polytropes. The numerical results show good agreement between the ASE and numerical and analytical models of the N-dimensional polytropes.
通过幂级数计算 N 维多面体
多向方程(Lane-Emden[LE]方程)非常有价值,因为它们为恒星的内部结构、星际物质、分子云甚至旋臂提供了一个简单的解释,可以计算并用于估算各种物理参数。许多分析和数值方法都被用来求解多向性 LE 方程。数列展开法在许多科学领域发挥了重要作用,并在物理科学的许多分支中得到了应用。本研究使用数列展开法研究 N 维多向性(即板、圆柱和球体)。为了求解 LE 型方程,我们采用了基于加速序列展开(ASE)的计算方法。我们计算了 N 维多质体的几个模型。数值结果表明,ASE 与 N 维多质体的数值模型和分析模型之间具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Astronomy
Open Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍: The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信