Welington de Oliveira, Valentina Sessa, David Sossa
{"title":"Computing Critical Angles Between Two Convex Cones","authors":"Welington de Oliveira, Valentina Sessa, David Sossa","doi":"10.1007/s10957-024-02424-3","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the numerical computation of critical angles between two convex cones in Euclidean spaces. We present a novel approach to computing these critical angles by reducing the problem to finding stationary points of a fractional programming problem. To efficiently compute these stationary points, we introduce a partial linearization-like algorithm that offers significant computational advantages. Solving a sequence of strictly convex subproblems with straightforward solutions in several settings gives the proposed algorithm high computational efficiency while delivering reliable results: our theoretical analysis demonstrates that the proposed algorithm asymptotically computes critical angles. Numerical experiments validate the efficiency of our approach, even when dealing with problems of relatively large dimensions: only a few seconds are necessary to compute critical angles between different types of cones in spaces of dimension 1000.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02424-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the numerical computation of critical angles between two convex cones in Euclidean spaces. We present a novel approach to computing these critical angles by reducing the problem to finding stationary points of a fractional programming problem. To efficiently compute these stationary points, we introduce a partial linearization-like algorithm that offers significant computational advantages. Solving a sequence of strictly convex subproblems with straightforward solutions in several settings gives the proposed algorithm high computational efficiency while delivering reliable results: our theoretical analysis demonstrates that the proposed algorithm asymptotically computes critical angles. Numerical experiments validate the efficiency of our approach, even when dealing with problems of relatively large dimensions: only a few seconds are necessary to compute critical angles between different types of cones in spaces of dimension 1000.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.