{"title":"Lagrange Multipliers in Locally Convex Spaces","authors":"Mohammed Bachir, Joël Blot","doi":"10.1007/s10957-024-02428-z","DOIUrl":null,"url":null,"abstract":"<p>We give a general Lagrange multiplier rule for mathematical programming problems in a Hausdorff locally convex space. We consider infinitely many inequality and equality constraints. Our results gives in particular a generalisation of the result of Jahn (Introduction to the theory of nonlinear optimization, Springer, Berlin, 2007), replacing Fréchet-differentiability assumptions on the functions by the Gateaux-differentiability. Moreover, the closed convex cone with a nonempty interior in the constraints is replaced by a strictly general class of closed subsets introduced in the paper and called <i>“admissible sets”</i>. Examples illustrating our results are given.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"99 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02428-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We give a general Lagrange multiplier rule for mathematical programming problems in a Hausdorff locally convex space. We consider infinitely many inequality and equality constraints. Our results gives in particular a generalisation of the result of Jahn (Introduction to the theory of nonlinear optimization, Springer, Berlin, 2007), replacing Fréchet-differentiability assumptions on the functions by the Gateaux-differentiability. Moreover, the closed convex cone with a nonempty interior in the constraints is replaced by a strictly general class of closed subsets introduced in the paper and called “admissible sets”. Examples illustrating our results are given.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.