{"title":"Computing Second-Order Points Under Equality Constraints: Revisiting Fletcher’s Augmented Lagrangian","authors":"Florentin Goyens, Armin Eftekhari, Nicolas Boumal","doi":"10.1007/s10957-024-02421-6","DOIUrl":null,"url":null,"abstract":"<p>We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches <span>\\(\\varepsilon \\)</span>-approximate second-order critical points of the original optimization problem in at most <span>\\({\\mathcal {O}}(\\varepsilon ^{-3})\\)</span> iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.\n</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"51 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02421-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches \(\varepsilon \)-approximate second-order critical points of the original optimization problem in at most \({\mathcal {O}}(\varepsilon ^{-3})\) iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.