Computing Second-Order Points Under Equality Constraints: Revisiting Fletcher’s Augmented Lagrangian

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Florentin Goyens, Armin Eftekhari, Nicolas Boumal
{"title":"Computing Second-Order Points Under Equality Constraints: Revisiting Fletcher’s Augmented Lagrangian","authors":"Florentin Goyens, Armin Eftekhari, Nicolas Boumal","doi":"10.1007/s10957-024-02421-6","DOIUrl":null,"url":null,"abstract":"<p>We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches <span>\\(\\varepsilon \\)</span>-approximate second-order critical points of the original optimization problem in at most <span>\\({\\mathcal {O}}(\\varepsilon ^{-3})\\)</span> iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02421-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches \(\varepsilon \)-approximate second-order critical points of the original optimization problem in at most \({\mathcal {O}}(\varepsilon ^{-3})\) iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.

Abstract Image

在相等约束条件下计算二阶点:重温弗莱彻的增量拉格朗日
我们要解决的问题是在平滑相等约束条件下最小化平滑函数。在这些约束条件的规则性假设下,我们提出了一个近似一阶和二阶临界点的概念,它依赖于黎曼最优化的几何形式主义。利用被称为弗莱彻增量拉格朗日的平滑精确惩罚函数,我们提出了一种最小化惩罚成本函数的算法,该算法最多只需要迭代一次就能达到原始优化问题的近似二阶临界点({\mathcal {O}}(\varepsilon ^{-3}))。这改进了当前的最佳理论边界。同时,我们还展示了弗莱彻增强拉格朗日的新特性,这些特性可能会引起我们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信