{"title":"A Boosted-DCA with Power-Sum-DC Decomposition for Linearly Constrained Polynomial Programs","authors":"Hu Zhang, Yi-Shuai Niu","doi":"10.1007/s10957-024-02414-5","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a novel Difference-of-Convex (DC) decomposition for polynomials using a power-sum representation, achieved by solving a sparse linear system. We introduce the Boosted DCA with Exact Line Search (<span>\\(\\hbox {BDCA}_\\text {e}\\)</span>) for addressing linearly constrained polynomial programs within the DC framework. Notably, we demonstrate that the exact line search equates to determining the roots of a univariate polynomial in an interval, with coefficients being computed explicitly based on the power-sum DC decompositions. The subsequential convergence of <span>\\(\\hbox {BDCA}_\\text {e}\\)</span> to critical points is proven, and its convergence rate under the Kurdyka–Łojasiewicz property is established. To efficiently tackle the convex subproblems, we integrate the Fast Dual Proximal Gradient method by exploiting the separable block structure of the power-sum DC decompositions. We validate our approach through numerical experiments on the Mean–Variance–Skewness–Kurtosis portfolio optimization model and box-constrained polynomial optimization problems. Comparative analysis of <span>\\(\\hbox {BDCA}_\\text {e}\\)</span> against DCA, BDCA with Armijo line search, UDCA, and UBDCA with projective DC decomposition, alongside standard nonlinear optimization solvers <span>FMINCON</span> and <span>FILTERSD</span>, substantiates the efficiency of our proposed approach.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"2015 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02414-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel Difference-of-Convex (DC) decomposition for polynomials using a power-sum representation, achieved by solving a sparse linear system. We introduce the Boosted DCA with Exact Line Search (\(\hbox {BDCA}_\text {e}\)) for addressing linearly constrained polynomial programs within the DC framework. Notably, we demonstrate that the exact line search equates to determining the roots of a univariate polynomial in an interval, with coefficients being computed explicitly based on the power-sum DC decompositions. The subsequential convergence of \(\hbox {BDCA}_\text {e}\) to critical points is proven, and its convergence rate under the Kurdyka–Łojasiewicz property is established. To efficiently tackle the convex subproblems, we integrate the Fast Dual Proximal Gradient method by exploiting the separable block structure of the power-sum DC decompositions. We validate our approach through numerical experiments on the Mean–Variance–Skewness–Kurtosis portfolio optimization model and box-constrained polynomial optimization problems. Comparative analysis of \(\hbox {BDCA}_\text {e}\) against DCA, BDCA with Armijo line search, UDCA, and UBDCA with projective DC decomposition, alongside standard nonlinear optimization solvers FMINCON and FILTERSD, substantiates the efficiency of our proposed approach.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.