{"title":"Distance Functions in Some Class of Infinite Dimensional Vector Spaces","authors":"Bator Anne, Walter Briec","doi":"10.1007/s10957-024-02425-2","DOIUrl":null,"url":null,"abstract":"<p>This paper considers the problem of measuring technical efficiency in some class of normed vector spaces. Specifically, the paper focuses on preordered and partially ordered vector spaces by proposing a suitable encompassing netput formulation of the production possibility set. Duality theorems extending some earlier results are established in the context of infinite dimensional spaces. The paper considers directional and normed distance functions and analyzes their relationships. Among other things, overall efficiency can be derived from technical efficiency under a suitable preordered vector space structure. More importantly, it is shown that the existence of core points in partially ordered vector spaces guarantees the comparison of production vectors using the directional distance function. Although the interior of the positive cone may be empty in infinite dimensional vector spaces, it is shown that normed distance functions can also be used to measure efficiency in such spaces by providing them with a suitable preorder structure.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"99 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02425-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the problem of measuring technical efficiency in some class of normed vector spaces. Specifically, the paper focuses on preordered and partially ordered vector spaces by proposing a suitable encompassing netput formulation of the production possibility set. Duality theorems extending some earlier results are established in the context of infinite dimensional spaces. The paper considers directional and normed distance functions and analyzes their relationships. Among other things, overall efficiency can be derived from technical efficiency under a suitable preordered vector space structure. More importantly, it is shown that the existence of core points in partially ordered vector spaces guarantees the comparison of production vectors using the directional distance function. Although the interior of the positive cone may be empty in infinite dimensional vector spaces, it is shown that normed distance functions can also be used to measure efficiency in such spaces by providing them with a suitable preorder structure.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.