{"title":"Ecological flexible protection method of expansive soil slope under rainfall","authors":"Yingzi Xu, Chunyan Yang, Chao Su, Zhen Huang, Xuhang Liao, Linqiang Tang","doi":"10.1680/jenge.22.00185","DOIUrl":null,"url":null,"abstract":"In this study, a new ecological slope protection method—Anchor Reinforced Vegetation System (ARVS) was applied to the newly excavated expansive soil slope. To explore the effect and mechanism of ARVS protection of newly excavated expansive soil slopes, expansive soil slopes with three different protection methods (bare slopes, grassed slopes, and ARVS slopes) were built. The continuous natural rainfall test and artificial rainfall tests were carried out. The results show that: compared with the bare slope and the grassed slope, ARVS could effectively adjust the moisture and heat balance of newly excavated expansive soil slopes and achieve a satisfactory soil and water conservation performance. Under different rainfall intensities, the runoff and soil loss rates of the ARVS-protected slope were smallest. Under the combined action of vegetation, high-performance turf reinforcement mats (HPTRMs) and anchors, the ARVS provided a superior erosion resistance. The higher the rainfall intensity is, the more significant the anti-erosion effect of the ARVS compared to that of grass protection technology. The ARVS could also effectively limit vertical and horizontal deformation of newly excavated expansive soil slopes. Therefore, the ARVS could effectively reduce the negative influences of the atmospheric environment on newly excavated expansive soil slopes and provide a new solution for shallow protection of newly excavated expansive soil slopes.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jenge.22.00185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a new ecological slope protection method—Anchor Reinforced Vegetation System (ARVS) was applied to the newly excavated expansive soil slope. To explore the effect and mechanism of ARVS protection of newly excavated expansive soil slopes, expansive soil slopes with three different protection methods (bare slopes, grassed slopes, and ARVS slopes) were built. The continuous natural rainfall test and artificial rainfall tests were carried out. The results show that: compared with the bare slope and the grassed slope, ARVS could effectively adjust the moisture and heat balance of newly excavated expansive soil slopes and achieve a satisfactory soil and water conservation performance. Under different rainfall intensities, the runoff and soil loss rates of the ARVS-protected slope were smallest. Under the combined action of vegetation, high-performance turf reinforcement mats (HPTRMs) and anchors, the ARVS provided a superior erosion resistance. The higher the rainfall intensity is, the more significant the anti-erosion effect of the ARVS compared to that of grass protection technology. The ARVS could also effectively limit vertical and horizontal deformation of newly excavated expansive soil slopes. Therefore, the ARVS could effectively reduce the negative influences of the atmospheric environment on newly excavated expansive soil slopes and provide a new solution for shallow protection of newly excavated expansive soil slopes.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.