Stability of Generalized Turán Number for Linear Forests

Pub Date : 2024-04-08 DOI:10.1007/s00373-024-02781-w
Yisai Xue, Yichong Liu, Liying Kang
{"title":"Stability of Generalized Turán Number for Linear Forests","authors":"Yisai Xue, Yichong Liu, Liying Kang","doi":"10.1007/s00373-024-02781-w","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>T</i> and a family of graphs <span>\\({\\mathcal {F}}\\)</span>, the generalized Turán number of <span>\\({\\mathcal {F}}\\)</span> is the maximum number of copies of <i>T</i> in an <span>\\({\\mathcal {F}}\\)</span>-free graph on <i>n</i> vertices, denoted by <span>\\(ex(n,T,{\\mathcal {F}})\\)</span>. A linear forest is a forest whose connected components are all paths and isolated vertices. Let <span>\\({\\mathcal {L}}_{k}\\)</span> be the family of all linear forests of size <i>k</i> without isolated vertices. In this paper, we obtained the maximum possible number of <i>r</i>-cliques in <i>G</i>, where <i>G</i> is <span>\\({\\mathcal {L}}_{k}\\)</span>-free with minimum degree at least <i>d</i>. Furthermore, we give a stability version of the result. As an application of the stability version of the result, we obtain a clique version of the stability of the Erdős–Gallai Theorem on matchings.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02781-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph T and a family of graphs \({\mathcal {F}}\), the generalized Turán number of \({\mathcal {F}}\) is the maximum number of copies of T in an \({\mathcal {F}}\)-free graph on n vertices, denoted by \(ex(n,T,{\mathcal {F}})\). A linear forest is a forest whose connected components are all paths and isolated vertices. Let \({\mathcal {L}}_{k}\) be the family of all linear forests of size k without isolated vertices. In this paper, we obtained the maximum possible number of r-cliques in G, where G is \({\mathcal {L}}_{k}\)-free with minimum degree at least d. Furthermore, we give a stability version of the result. As an application of the stability version of the result, we obtain a clique version of the stability of the Erdős–Gallai Theorem on matchings.

Abstract Image

分享
查看原文
线性森林广义图兰数的稳定性
给定一个图 T 和一个图族 \({\mathcal{F}}\),\({\mathcal{F}}\)的广义图兰数就是在 n 个顶点上的无\({\mathcal{F}}\)图中 T 的最大副本数,用 \(ex(n,T,{\mathcal{F}})\)表示。线性森林是指其连通部分都是路径和孤立顶点的森林。设 \({\mathcal {L}}_{k}\) 是所有大小为 k 且没有孤立顶点的线性森林的族。在本文中,我们得到了 G 中 r-cliques 的最大可能数目,其中 G 是 \({\mathcal {L}}_{k}\)-free的,且最小度至少为 d。作为该结果稳定性版本的应用,我们得到了关于匹配的厄多斯-加莱定理稳定性的小块版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信