The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I

Vincent Colin, Paolo Ghiggini, Ko Honda
{"title":"The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I","authors":"Vincent Colin, Paolo Ghiggini, Ko Honda","doi":"10.1007/s10240-024-00145-x","DOIUrl":null,"url":null,"abstract":"<p>Given an open book decomposition <span>\\((S,\\mathfrak{h} )\\)</span> adapted to a closed, oriented 3-manifold <span>\\(M\\)</span>, we define a chain map <span>\\(\\Phi \\)</span> from a certain Heegaard Floer chain complex associated to <span>\\((S,\\mathfrak{h} )\\)</span> to a certain embedded contact homology chain complex associated to <span>\\((S,\\mathfrak{h} )\\)</span>, as defined in (Colin et al. in Geom. Topol., 2024), and prove that it induces an isomorphism on the level of homology. This implies the isomorphism between the hat version of Heegaard Floer homology of <span>\\(-M\\)</span> and the hat version of embedded contact homology of <span>\\(M\\)</span>.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-024-00145-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given an open book decomposition \((S,\mathfrak{h} )\) adapted to a closed, oriented 3-manifold \(M\), we define a chain map \(\Phi \) from a certain Heegaard Floer chain complex associated to \((S,\mathfrak{h} )\) to a certain embedded contact homology chain complex associated to \((S,\mathfrak{h} )\), as defined in (Colin et al. in Geom. Topol., 2024), and prove that it induces an isomorphism on the level of homology. This implies the isomorphism between the hat version of Heegaard Floer homology of \(-M\) and the hat version of embedded contact homology of \(M\).

通过开卷分解的 Heegaard Floer 同调与嵌入接触同调的等价性 I
给定一个适应于封闭、定向 3-manifold(M)的开卷分解 \((S,\mathfrak{h} )\),我们定义一个链映射 \(\Phi \),从与\((S、\)到与\((S,\mathfrak{h}))相关联的某个嵌入接触同调链复合物的链映射,如(Colin et al.in Geom、2024)中的定义,并证明它在同调层面上诱导了同构。这意味着 \(-M\) 的帽子版 Heegaard Floer 同调与 \(M\) 的帽子版嵌入接触同调之间是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信