{"title":"On the Existence of Small Strictly Neumaier Graphs","authors":"Aida Abiad, Maarten De Boeck, Sjanne Zeijlemaker","doi":"10.1007/s00373-024-02779-4","DOIUrl":null,"url":null,"abstract":"<p>A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical proof of the uniqueness of the smallest strictly Neumaier graph with parameters (16, 9, 4; 2, 4), we establish the existence of a strictly Neumaier graph with parameters (25, 12, 5; 2, 5), and we disprove the existence of strictly Neumaier graphs with parameters (25, 16, 9; 3, 5), (28, 18, 11; 4, 7), (33, 24, 17; 6, 9), (35, 2212; 3, 5), (40, 30, 22; 7, 10) and (55, 34, 18; 3, 5). Our proofs use combinatorial techniques and a novel application of integer programming methods.\n</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"87 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02779-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical proof of the uniqueness of the smallest strictly Neumaier graph with parameters (16, 9, 4; 2, 4), we establish the existence of a strictly Neumaier graph with parameters (25, 12, 5; 2, 5), and we disprove the existence of strictly Neumaier graphs with parameters (25, 16, 9; 3, 5), (28, 18, 11; 4, 7), (33, 24, 17; 6, 9), (35, 2212; 3, 5), (40, 30, 22; 7, 10) and (55, 34, 18; 3, 5). Our proofs use combinatorial techniques and a novel application of integer programming methods.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.