{"title":"Low-Latency VR Video Processing-Transmitting System Based on Edge Computing","authors":"Nianzhen Gao;Jiaxi Zhou;Guoan Wan;Xinhai Hua;Ting Bi;Tao Jiang","doi":"10.1109/TBC.2024.3380455","DOIUrl":null,"url":null,"abstract":"The widespread use of live streaming necessitates low-latency requirements for the processing and transmission of virtual reality (VR) videos. This paper introduces a prototype system for low-latency VR video processing and transmission that exploits edge computing to harness the computational power of edge servers. This approach enables efficient video preprocessing and facilitates closer-to-user multicast video distribution. Despite edge computing’s potential, managing large-scale access, addressing differentiated channel conditions, and accommodating diverse user viewports pose significant challenges for VR video transcoding and scheduling. To tackle these challenges, our system utilizes dual-edge servers for video transcoding and slicing, thereby markedly improving the viewing experience compared to traditional cloud-based systems. Additionally, we devise a low-complexity greedy algorithm for multi-edge and multi-user VR video offloading distribution, employing the results of bitrate decisions to guide video transcoding inversely. Simulation results reveal that our strategy significantly enhances system utility by 44.77% over existing state-of-the-art schemes that do not utilize edge servers while reducing processing time by 58.54%.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"862-871"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10496847/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of live streaming necessitates low-latency requirements for the processing and transmission of virtual reality (VR) videos. This paper introduces a prototype system for low-latency VR video processing and transmission that exploits edge computing to harness the computational power of edge servers. This approach enables efficient video preprocessing and facilitates closer-to-user multicast video distribution. Despite edge computing’s potential, managing large-scale access, addressing differentiated channel conditions, and accommodating diverse user viewports pose significant challenges for VR video transcoding and scheduling. To tackle these challenges, our system utilizes dual-edge servers for video transcoding and slicing, thereby markedly improving the viewing experience compared to traditional cloud-based systems. Additionally, we devise a low-complexity greedy algorithm for multi-edge and multi-user VR video offloading distribution, employing the results of bitrate decisions to guide video transcoding inversely. Simulation results reveal that our strategy significantly enhances system utility by 44.77% over existing state-of-the-art schemes that do not utilize edge servers while reducing processing time by 58.54%.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”