Vadose zone flushing of fertilizer tracked by isotopes of water and nitrate

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Julie N. Weitzman, J. Renée Brooks, Jana E. Compton, Barton R. Faulkner, R. Edward Peachey, William D. Rugh, Robert A. Coulombe, Blake Hatteberg, Stephen R. Hutchins
{"title":"Vadose zone flushing of fertilizer tracked by isotopes of water and nitrate","authors":"Julie N. Weitzman, J. Renée Brooks, Jana E. Compton, Barton R. Faulkner, R. Edward Peachey, William D. Rugh, Robert A. Coulombe, Blake Hatteberg, Stephen R. Hutchins","doi":"10.1002/vzj2.20324","DOIUrl":null,"url":null,"abstract":"A substantial fraction of nitrogen (N) fertilizer applied in agricultural systems is not incorporated into crops and moves below the rooting zone as nitrate (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>). Understanding mechanisms for soil N retention below the rooting zone and leaching to groundwater is essential for our ability to track the fate of added N. We used dual stable isotopes of nitrate (δ<jats:sup>15</jats:sup>N–NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> and δ<jats:sup>18</jats:sup>O–NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) and water (δ<jats:sup>18</jats:sup>O–H<jats:sub>2</jats:sub>O and δ<jats:sup>2</jats:sup>H–H<jats:sub>2</jats:sub>O) to understand the mechanisms driving nitrate leaching at three depths (0.8, 1.5, and 3.0 m) of an irrigated corn field sampled every 2 weeks from 2016 to 2020 in the southern Willamette Valley, Oregon, USA. Distinct periods of high nitrate concentrations with lower δ<jats:sup>15</jats:sup>N–NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> values indicated that a portion of that nitrate was from recent fertilizer applications. We used a mixing model to quantify nitrate fluxes associated with recently added fertilizer N versus older, legacy soil N during these “fertilizer signal periods.” Nitrate leached below 3.0 m in these periods made up a larger proportion of the total N leached at that depth (∼52%) versus the two shallower depths (∼13%–16%), indicating preferential movement of recently applied fertilizer N through the deep soil into groundwater. Further, N associated with recent fertilizer additions leached more easily when compared to remobilized legacy N. A high volume of fall and winter precipitation may push residual fertilizer N to depth, potentially posing a larger threat to groundwater than legacy N. Optimizing fertilizer N additions could minimize fertilizer losses and reduce nitrate leaching to groundwater.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A substantial fraction of nitrogen (N) fertilizer applied in agricultural systems is not incorporated into crops and moves below the rooting zone as nitrate (NO3). Understanding mechanisms for soil N retention below the rooting zone and leaching to groundwater is essential for our ability to track the fate of added N. We used dual stable isotopes of nitrate (δ15N–NO3 and δ18O–NO3) and water (δ18O–H2O and δ2H–H2O) to understand the mechanisms driving nitrate leaching at three depths (0.8, 1.5, and 3.0 m) of an irrigated corn field sampled every 2 weeks from 2016 to 2020 in the southern Willamette Valley, Oregon, USA. Distinct periods of high nitrate concentrations with lower δ15N–NO3 values indicated that a portion of that nitrate was from recent fertilizer applications. We used a mixing model to quantify nitrate fluxes associated with recently added fertilizer N versus older, legacy soil N during these “fertilizer signal periods.” Nitrate leached below 3.0 m in these periods made up a larger proportion of the total N leached at that depth (∼52%) versus the two shallower depths (∼13%–16%), indicating preferential movement of recently applied fertilizer N through the deep soil into groundwater. Further, N associated with recent fertilizer additions leached more easily when compared to remobilized legacy N. A high volume of fall and winter precipitation may push residual fertilizer N to depth, potentially posing a larger threat to groundwater than legacy N. Optimizing fertilizer N additions could minimize fertilizer losses and reduce nitrate leaching to groundwater.
通过水和硝酸盐的同位素追踪地下水层对肥料的冲刷情况
农业系统中施用的氮(N)肥料有很大一部分没有被作物吸收,而是以硝酸盐(NO3-)的形式转移到根系以下。了解土壤氮在根区以下的滞留机制以及向地下水沥滤的机制,对于我们追踪所施氮肥的去向至关重要。我们使用硝酸盐(δ15N-NO3- 和 δ18O-NO3-)和水(δ18O-H2O 和 δ2H-H2O)的双稳定同位素来了解美国俄勒冈州威拉米特河谷南部灌溉玉米田三个深度(0.8 米、1.5 米和 3.0 米)的硝酸盐淋溶驱动机制。不同时期的硝酸盐浓度较高,而δ15N-NO3-值较低,这表明其中一部分硝酸盐来自最近施用的化肥。在这些 "化肥信号期",我们使用混合模型来量化与最近添加的化肥氮和较早的遗留土壤氮相关的硝酸盐通量。在这些时期,3.0 米以下浸出的硝酸盐在该深度浸出的总氮量中所占比例较大(52%),而在两个较浅的深度(13%-16%),这表明最近施用的化肥氮优先通过深层土壤进入地下水。秋冬季的大量降水可能会将残留的化肥氮推向深层,对地下水的潜在威胁大于遗留氮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信