Efstathios Diamantopoulos, Jirka Simunek, Tobias K. D. Weber
{"title":"Implementation of the Brunswick model system into the Hydrus software suite","authors":"Efstathios Diamantopoulos, Jirka Simunek, Tobias K. D. Weber","doi":"10.1002/vzj2.20326","DOIUrl":null,"url":null,"abstract":"The Brunswick modular framework for modeling unsaturated soil hydraulic properties (SHP) over the full moisture range was implemented in the Hydrus suite. Users can now additionally choose between four different variants of the Brunswick model: (i) van Genuchten–Mualem (VGM), (ii) Brooks–Corey, (iii) Kosugi, and (iv) modified van Genuchten. For demonstration purposes, simulation results for two different setups, (i) bare soil evaporation and (ii) root water uptake, are presented, along with a comparison of the original VGM model and its Brunswick variant. Results show that the original VGM model underestimates the simulated cumulative evaporation and cumulative transpiration due to the inconsistent representation of the SHP in the dry moisture range. We also implemented a two‐step hydro‐PTF (pedotransfer function) into the Hydrus suite that converts the parameters of the original VGM model (from Rosetta) to the corresponding Brunswick variant. In that way, physically comprehensive simulations are ensured if no data on SHP are directly available, but information on physical soil properties (e.g., texture and bulk density) exists.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"48 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20326","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Brunswick modular framework for modeling unsaturated soil hydraulic properties (SHP) over the full moisture range was implemented in the Hydrus suite. Users can now additionally choose between four different variants of the Brunswick model: (i) van Genuchten–Mualem (VGM), (ii) Brooks–Corey, (iii) Kosugi, and (iv) modified van Genuchten. For demonstration purposes, simulation results for two different setups, (i) bare soil evaporation and (ii) root water uptake, are presented, along with a comparison of the original VGM model and its Brunswick variant. Results show that the original VGM model underestimates the simulated cumulative evaporation and cumulative transpiration due to the inconsistent representation of the SHP in the dry moisture range. We also implemented a two‐step hydro‐PTF (pedotransfer function) into the Hydrus suite that converts the parameters of the original VGM model (from Rosetta) to the corresponding Brunswick variant. In that way, physically comprehensive simulations are ensured if no data on SHP are directly available, but information on physical soil properties (e.g., texture and bulk density) exists.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.