A Simulation and Empirical Study of the Maximum Likelihood Estimator for Stochastic Volatility Jump-Diffusion Models

Jean-François Bégin, Mathieu Boudreault
{"title":"A Simulation and Empirical Study of the Maximum Likelihood Estimator for Stochastic Volatility Jump-Diffusion Models","authors":"Jean-François Bégin, Mathieu Boudreault","doi":"10.1515/snde-2023-0028","DOIUrl":null,"url":null,"abstract":"We investigate the behaviour of the maximum likelihood estimator (MLE) for stochastic volatility jump-diffusion models commonly used in financial risk management. A simulation study shows the practical conditions under which the MLE behaves according to theory. In an extensive empirical study based on nine indices and more than 6000 individual stocks, we nonetheless find that the MLE is unable to replicate key higher moments. We then introduce a moment-targeted MLE – robust to model misspecification – and revisit both simulation and empirical studies. We find it performs better than the MLE, improving the management of financial risk.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the behaviour of the maximum likelihood estimator (MLE) for stochastic volatility jump-diffusion models commonly used in financial risk management. A simulation study shows the practical conditions under which the MLE behaves according to theory. In an extensive empirical study based on nine indices and more than 6000 individual stocks, we nonetheless find that the MLE is unable to replicate key higher moments. We then introduce a moment-targeted MLE – robust to model misspecification – and revisit both simulation and empirical studies. We find it performs better than the MLE, improving the management of financial risk.
随机波动跳跃-扩散模型最大似然估计器的模拟与实证研究
我们研究了金融风险管理中常用的随机波动跳跃扩散模型的最大似然估计器(MLE)的行为。模拟研究表明,在实际条件下,MLE 的表现符合理论。在基于九个指数和 6000 多只个股的广泛实证研究中,我们发现 MLE 无法复制关键的高矩阵。随后,我们引入了一种时刻目标 MLE--对模型的错误规范具有鲁棒性--并重新进行了模拟和实证研究。我们发现它比 MLE 表现更好,从而改善了金融风险管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信