Scalar curvature along the Ricci flow

Pub Date : 2024-04-15 DOI:10.1007/s10711-024-00913-3
Yi Li
{"title":"Scalar curvature along the Ricci flow","authors":"Yi Li","doi":"10.1007/s10711-024-00913-3","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove a well-known conjecture on the Ricci flow under a curvature condition, which is a pinching between the Ricci and Weyl tensors divided by suitably translated scalar curvature, motivated by Cao’s result (Commun Anal Geom 19(5):975–990, 2011).\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00913-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we prove a well-known conjecture on the Ricci flow under a curvature condition, which is a pinching between the Ricci and Weyl tensors divided by suitably translated scalar curvature, motivated by Cao’s result (Commun Anal Geom 19(5):975–990, 2011).

分享
查看原文
沿利玛窦流的标量曲率
在本论文中,我们证明了在曲率条件下关于利玛窦流的一个著名猜想,即利玛窦张量和韦尔张量之间的夹角除以适当平移的标量曲率,该猜想源自曹文轩的结果(Commun Anal Geom 19(5):975-990, 2011)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信