Continuous deformation of the Bowen-Series map associated to a cocompact triangle group

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"Continuous deformation of the Bowen-Series map associated to a cocompact triangle group","authors":"","doi":"10.1007/s10711-024-00887-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In 1979, for each signature for Fuchsian groups of the first kind, Bowen and Series constructed an explicit fundamental domain for one group of the signature, and from this a function on <span> <span>\\({\\mathbb {S}}^1\\)</span> </span> tightly associated with this group. In general, their fundamental domain enjoys what has since been called both the ‘extension property’ and the ‘even corners property’. We determine the exact set of signatures for cocompact triangle groups for which this property can hold for any convex fundamental domain, and verify that for this restricted set, the Bowen-Series fundamental domain does have the property. To each Bowen-Series function in this corrected setting, we naturally associate four continuous deformation families of circle functions. We show that each of these functions is aperiodic if and only if it is surjective; and, is finite Markov if and only if its natural parameter is a hyperbolic fixed point of the triangle group at hand.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"32 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00887-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1979, for each signature for Fuchsian groups of the first kind, Bowen and Series constructed an explicit fundamental domain for one group of the signature, and from this a function on \({\mathbb {S}}^1\) tightly associated with this group. In general, their fundamental domain enjoys what has since been called both the ‘extension property’ and the ‘even corners property’. We determine the exact set of signatures for cocompact triangle groups for which this property can hold for any convex fundamental domain, and verify that for this restricted set, the Bowen-Series fundamental domain does have the property. To each Bowen-Series function in this corrected setting, we naturally associate four continuous deformation families of circle functions. We show that each of these functions is aperiodic if and only if it is surjective; and, is finite Markov if and only if its natural parameter is a hyperbolic fixed point of the triangle group at hand.

与协整三角形群相关的鲍温系列图的连续变形
摘要 1979 年,对于第一类富奇异群的每个签名,鲍文和辑为签名中的一个群构造了一个明确的基域,并由此构造了一个与这个群紧密相关的 \({\mathbb {S}}^1\) 上的函数。一般来说,他们的基域具有后来被称为 "扩展性质 "和 "偶角性质 "的特征。我们确定了对于任何凸基域,这一性质都能成立的可紧密三角形群的精确签名集,并验证了对于这一受限集,鲍恩系列基域确实具有这一性质。对于这个修正设置中的每个鲍温系列函数,我们自然地关联了四个连续变形的圆函数族。我们证明,这些函数中的每个函数都是非周期性的,当且仅当它是可射的;并且,当且仅当它的自然参数是当前三角形群的双曲定点时,它是有限马尔可夫函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信