The Achievement Set of Generalized Multigeometric Sequences

IF 1.1 3区 数学 Q1 MATHEMATICS
Dmytro Karvatskyi, Aniceto Murillo, Antonio Viruel
{"title":"The Achievement Set of Generalized Multigeometric Sequences","authors":"Dmytro Karvatskyi, Aniceto Murillo, Antonio Viruel","doi":"10.1007/s00025-024-02158-8","DOIUrl":null,"url":null,"abstract":"<p>We study the topology of all possible subsums of the <i>generalized multigeometric series</i> <span>\\(k_1f(x)+k_2f(x)+\\dots +k_mf(x)+\\dots + k_1f(x^n)+\\dots +k_mf(x^n)+\\dots ,\\)</span> where <span>\\(k_1, k_2, \\dots , k_m\\)</span> are fixed positive real numbers and <i>f</i> runs along a certain class of non-negative functions on the unit interval. We detect particular regions of this interval for which this achievement set is, respectively, a compact interval, a Cantor set and a Cantorval.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"130 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02158-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the topology of all possible subsums of the generalized multigeometric series \(k_1f(x)+k_2f(x)+\dots +k_mf(x)+\dots + k_1f(x^n)+\dots +k_mf(x^n)+\dots ,\) where \(k_1, k_2, \dots , k_m\) are fixed positive real numbers and f runs along a certain class of non-negative functions on the unit interval. We detect particular regions of this interval for which this achievement set is, respectively, a compact interval, a Cantor set and a Cantorval.

广义多重计量序列的成就集
我们研究广义多重几何数列\(k_1f(x)+k_2f(x)+\dots +k_mf(x)+\dots + k_1f(x^n)+\dots +k_mf(x^n)+\dots ,\)的所有可能子集的拓扑结构,其中\(k_1, k_2, \dots , k_m\)是固定的正实数,f沿着单位区间上的某类非负函数运行。我们检测了这个区间的特定区域,对于这些区域,这个成就集分别是一个紧凑区间、一个康托集和一个康托瓦尔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信