Ground States for the Nonlinear Schrödinger Equation with Critical Growth and Potential

IF 1.1 3区 数学 Q1 MATHEMATICS
Jin-Cai Kang, Chun-Lei Tang
{"title":"Ground States for the Nonlinear Schrödinger Equation with Critical Growth and Potential","authors":"Jin-Cai Kang, Chun-Lei Tang","doi":"10.1007/s00025-024-02166-8","DOIUrl":null,"url":null,"abstract":"<p>We investigate a class of the nonlinear Schrödinger equation in <span>\\( \\mathbb {R}^N\\)</span></p><span>$$\\begin{aligned} -\\Delta u +V(x)u=|u|^{2^*-2}u+\\lambda |u|^{p-2}u, \\end{aligned}$$</span><p>where <span>\\(N\\ge 3\\)</span>, <span>\\(\\lambda &gt;0\\)</span> and <span>\\(p\\in (2,2^*)\\)</span> with <span>\\( 2^*=\\frac{2 N}{N-2}\\)</span>. Here, <span>\\(V(x)=V_1(x)\\)</span> for <span>\\(x_1&gt;0\\)</span> and <span>\\(V(x)=V_2(x)\\)</span> for <span>\\(x_1&lt;0\\)</span>, where <span>\\(V_1,V_2 \\)</span> are periodic in each coordinate direction. By providing a splitting Lemma corresponding to non-periodic external potential, we obtain the existence of ground state solution for the above problem. It is worth to mention that the arguments used in this paper are also valid for the Sobolev subcritical problem studied by Dohnal et al. (Commun Math Phys 308:511–542, 2011).</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02166-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a class of the nonlinear Schrödinger equation in \( \mathbb {R}^N\)

$$\begin{aligned} -\Delta u +V(x)u=|u|^{2^*-2}u+\lambda |u|^{p-2}u, \end{aligned}$$

where \(N\ge 3\), \(\lambda >0\) and \(p\in (2,2^*)\) with \( 2^*=\frac{2 N}{N-2}\). Here, \(V(x)=V_1(x)\) for \(x_1>0\) and \(V(x)=V_2(x)\) for \(x_1<0\), where \(V_1,V_2 \) are periodic in each coordinate direction. By providing a splitting Lemma corresponding to non-periodic external potential, we obtain the existence of ground state solution for the above problem. It is worth to mention that the arguments used in this paper are also valid for the Sobolev subcritical problem studied by Dohnal et al. (Commun Math Phys 308:511–542, 2011).

具有临界增长和潜能的非线性薛定谔方程的基态
We investigate a class of the nonlinear Schrödinger equation in\( \mathbb {R}^N\)$$begin{aligned} -\Delta u +V(x)u=|u|^{2^*-2}u+\lambda |u|^{p-2}u, \end{aligned}$$where\(N\ge 3\),\(\lambda >;0) and\(p\in (2,2^*)\) with\( 2^*=\frac{2 N}{N-2}\)。这里,\(V(x)=V_1(x)\)为\(x_1>0\),\(V(x)=V_2(x)\)为\(x_1<0\),其中\(V_1,V_2\)在每个坐标方向上都是周期性的。通过提供与非周期外部势对应的分裂定理,我们得到了上述问题的基态解的存在性。值得一提的是,本文所使用的论证也适用于 Dohnal 等人研究的 Sobolev 次临界问题(Commun Math Phys 308:511-542, 2011)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信