{"title":"On the Teichmüller stack of compact quotients of $${\\text {SL}}_2({\\mathbb {C}})$$","authors":"Théo Jamin","doi":"10.1007/s10711-024-00916-0","DOIUrl":null,"url":null,"abstract":"<p>This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by <span>Ghys</span> (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of <span>\\({\\text {SL}}_2({\\mathbb {C}})\\)</span>. In his article, <span>Ghys</span> showed that the analytic germ of the representation variety <span>\\({\\mathcal {R}}(\\varGamma ):={\\text {Hom}}(\\varGamma ,{\\text {SL}}_2({\\mathbb {C}}))\\)</span> of <span>\\(\\varGamma \\)</span> in <span>\\({\\text {SL}}_2({\\mathbb {C}})\\)</span>, pointed at the trivial morphism, determines the Kuranishi space of <span>\\({\\text {SL}}_2({\\mathbb {C}})/\\varGamma \\)</span>. In this note, we show that the tautological family above a Zariski analytic open subset <i>V</i> in <span>\\({\\mathcal {R}}(\\varGamma )\\)</span> remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack <span>\\([V/{\\text {SL}}_2({\\mathbb {C}})]\\)</span> is an open substack of the Teichmüller stack of <span>\\({\\text {SL}}_2({\\mathbb {C}})/\\varGamma \\)</span>.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"32 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00916-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by Ghys (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of \({\text {SL}}_2({\mathbb {C}})\). In his article, Ghys showed that the analytic germ of the representation variety \({\mathcal {R}}(\varGamma ):={\text {Hom}}(\varGamma ,{\text {SL}}_2({\mathbb {C}}))\) of \(\varGamma \) in \({\text {SL}}_2({\mathbb {C}})\), pointed at the trivial morphism, determines the Kuranishi space of \({\text {SL}}_2({\mathbb {C}})/\varGamma \). In this note, we show that the tautological family above a Zariski analytic open subset V in \({\mathcal {R}}(\varGamma )\) remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack \([V/{\text {SL}}_2({\mathbb {C}})]\) is an open substack of the Teichmüller stack of \({\text {SL}}_2({\mathbb {C}})/\varGamma \).
期刊介绍:
Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems.
Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include:
A fast turn-around time for articles.
Special issues centered on specific topics.
All submitted papers should include some explanation of the context of the main results.
Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.