Prym representations of the handlebody group

Pub Date : 2024-03-29 DOI:10.1007/s10711-024-00911-5
{"title":"Prym representations of the handlebody group","authors":"","doi":"10.1007/s10711-024-00911-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>S</em> be an oriented, closed surface of genus <em>g</em>. The mapping class group of <em>S</em> is the group of orientation preserving homeomorphisms of <em>S</em> modulo isotopy. In 1997, Looijenga introduced the Prym representations, which are virtual representations of the mapping class group that depend on a finite, abelian group. Let <em>V</em> be a genus <em>g</em> handlebody with boundary <em>S</em>. The handlebody group is the subgroup of those mapping classes of <em>S</em> that extend over <em>V</em>. The twist group is the subgroup of the handlebody group generated by twists about meridians. Here, we restrict the Prym representations to the handlebody group and further to the twist group. We determine the image of the representations in the cyclic case.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00911-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be an oriented, closed surface of genus g. The mapping class group of S is the group of orientation preserving homeomorphisms of S modulo isotopy. In 1997, Looijenga introduced the Prym representations, which are virtual representations of the mapping class group that depend on a finite, abelian group. Let V be a genus g handlebody with boundary S. The handlebody group is the subgroup of those mapping classes of S that extend over V. The twist group is the subgroup of the handlebody group generated by twists about meridians. Here, we restrict the Prym representations to the handlebody group and further to the twist group. We determine the image of the representations in the cyclic case.

分享
查看原文
手柄体群的普赖姆表征
S 的映射类群是 S 的方向保持同构群。1997 年,Looijenga 引入了 Prym 表示,它是映射类群的虚拟表示,取决于一个有限的无性群。让 V 是具有边界 S 的 g 属手柄体。手柄体群是 S 的映射类在 V 上延伸的子群。在此,我们将 Prym 表示限定于柄体群,并进一步限定于扭转群。我们将确定循环情况下的表示的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信