{"title":"The Nielsen realization problem for high degree del Pezzo surfaces","authors":"Seraphina Eun Bi Lee","doi":"10.1007/s10711-024-00912-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>M</i> be a smooth 4-manifold underlying some del Pezzo surface of degree <span>\\(d \\ge 6\\)</span>. We consider the smooth Nielsen realization problem for <i>M</i>: which finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M) = \\pi _0({{\\,\\textrm{Homeo}\\,}}^+(M))\\)</span> have lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M) \\le {{\\,\\textrm{Homeo}\\,}}^+(M)\\)</span> under the quotient map <span>\\(\\pi : {{\\,\\textrm{Homeo}\\,}}^+(M) \\rightarrow {{\\,\\textrm{Mod}\\,}}(M)\\)</span>? We give a complete classification of such finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> for <span>\\(d \\ge 7\\)</span> and a partial answer for <span>\\(d = 6\\)</span>. For the cases <span>\\(d \\ge 8\\)</span>, the quotient map <span>\\(\\pi \\)</span> admits a section with image contained in <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>. For the case <span>\\(d = 7\\)</span>, we show that all finite order elements of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> have lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>, but there are finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> that do not lift to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>. We prove that the condition of whether a finite subgroup <span>\\(G \\le {{\\,\\textrm{Mod}\\,}}(M)\\)</span> lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span> is equivalent to the existence of a certain equivariant connected sum realizing <i>G</i>. For the case <span>\\(d = 6\\)</span>, we show this equivalence for all maximal finite subgroups <span>\\(G \\le {{\\,\\textrm{Mod}\\,}}(M)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00912-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let M be a smooth 4-manifold underlying some del Pezzo surface of degree \(d \ge 6\). We consider the smooth Nielsen realization problem for M: which finite subgroups of \({{\,\textrm{Mod}\,}}(M) = \pi _0({{\,\textrm{Homeo}\,}}^+(M))\) have lifts to \({{\,\textrm{Diff}\,}}^+(M) \le {{\,\textrm{Homeo}\,}}^+(M)\) under the quotient map \(\pi : {{\,\textrm{Homeo}\,}}^+(M) \rightarrow {{\,\textrm{Mod}\,}}(M)\)? We give a complete classification of such finite subgroups of \({{\,\textrm{Mod}\,}}(M)\) for \(d \ge 7\) and a partial answer for \(d = 6\). For the cases \(d \ge 8\), the quotient map \(\pi \) admits a section with image contained in \({{\,\textrm{Diff}\,}}^+(M)\). For the case \(d = 7\), we show that all finite order elements of \({{\,\textrm{Mod}\,}}(M)\) have lifts to \({{\,\textrm{Diff}\,}}^+(M)\), but there are finite subgroups of \({{\,\textrm{Mod}\,}}(M)\) that do not lift to \({{\,\textrm{Diff}\,}}^+(M)\). We prove that the condition of whether a finite subgroup \(G \le {{\,\textrm{Mod}\,}}(M)\) lifts to \({{\,\textrm{Diff}\,}}^+(M)\) is equivalent to the existence of a certain equivariant connected sum realizing G. For the case \(d = 6\), we show this equivalence for all maximal finite subgroups \(G \le {{\,\textrm{Mod}\,}}(M)\).