The Nielsen realization problem for high degree del Pezzo surfaces

IF 0.5 4区 数学 Q3 MATHEMATICS
Seraphina Eun Bi Lee
{"title":"The Nielsen realization problem for high degree del Pezzo surfaces","authors":"Seraphina Eun Bi Lee","doi":"10.1007/s10711-024-00912-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>M</i> be a smooth 4-manifold underlying some del Pezzo surface of degree <span>\\(d \\ge 6\\)</span>. We consider the smooth Nielsen realization problem for <i>M</i>: which finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M) = \\pi _0({{\\,\\textrm{Homeo}\\,}}^+(M))\\)</span> have lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M) \\le {{\\,\\textrm{Homeo}\\,}}^+(M)\\)</span> under the quotient map <span>\\(\\pi : {{\\,\\textrm{Homeo}\\,}}^+(M) \\rightarrow {{\\,\\textrm{Mod}\\,}}(M)\\)</span>? We give a complete classification of such finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> for <span>\\(d \\ge 7\\)</span> and a partial answer for <span>\\(d = 6\\)</span>. For the cases <span>\\(d \\ge 8\\)</span>, the quotient map <span>\\(\\pi \\)</span> admits a section with image contained in <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>. For the case <span>\\(d = 7\\)</span>, we show that all finite order elements of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> have lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>, but there are finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> that do not lift to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>. We prove that the condition of whether a finite subgroup <span>\\(G \\le {{\\,\\textrm{Mod}\\,}}(M)\\)</span> lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span> is equivalent to the existence of a certain equivariant connected sum realizing <i>G</i>. For the case <span>\\(d = 6\\)</span>, we show this equivalence for all maximal finite subgroups <span>\\(G \\le {{\\,\\textrm{Mod}\\,}}(M)\\)</span>.\n</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"149 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00912-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let M be a smooth 4-manifold underlying some del Pezzo surface of degree \(d \ge 6\). We consider the smooth Nielsen realization problem for M: which finite subgroups of \({{\,\textrm{Mod}\,}}(M) = \pi _0({{\,\textrm{Homeo}\,}}^+(M))\) have lifts to \({{\,\textrm{Diff}\,}}^+(M) \le {{\,\textrm{Homeo}\,}}^+(M)\) under the quotient map \(\pi : {{\,\textrm{Homeo}\,}}^+(M) \rightarrow {{\,\textrm{Mod}\,}}(M)\)? We give a complete classification of such finite subgroups of \({{\,\textrm{Mod}\,}}(M)\) for \(d \ge 7\) and a partial answer for \(d = 6\). For the cases \(d \ge 8\), the quotient map \(\pi \) admits a section with image contained in \({{\,\textrm{Diff}\,}}^+(M)\). For the case \(d = 7\), we show that all finite order elements of \({{\,\textrm{Mod}\,}}(M)\) have lifts to \({{\,\textrm{Diff}\,}}^+(M)\), but there are finite subgroups of \({{\,\textrm{Mod}\,}}(M)\) that do not lift to \({{\,\textrm{Diff}\,}}^+(M)\). We prove that the condition of whether a finite subgroup \(G \le {{\,\textrm{Mod}\,}}(M)\) lifts to \({{\,\textrm{Diff}\,}}^+(M)\) is equivalent to the existence of a certain equivariant connected sum realizing G. For the case \(d = 6\), we show this equivalence for all maximal finite subgroups \(G \le {{\,\textrm{Mod}\,}}(M)\).

Abstract Image

高阶德尔佩佐曲面的尼尔森实现问题
让 M 是一个光滑的 4-manifold ,下层是某个度数为 \(d \ge 6\ )的 del Pezzo 曲面。我们考虑 M 的光滑尼尔森实现问题:在商映射 \(\pi ...) 下,{{\textrm{Mod}\,}(M) = \pi _0({{\textrm{Homeo}\,}^+(M))的哪些有限子群有提升到 \({{\,\textrm{Diff}\,}}^+(M) \le {{\,\textrm{Homeo}\,}}^+(M)\) :{{\,\textrm{Homeo}\,}}^+(M) \rightarrow {{\,\textrm{Mod}\,}}(M)\)?对于(d \ge 7\ ),我们给出了这种有限子群的完整分类,对于(d = 6\ ),我们给出了部分答案。对于(d = 8)的情况,商映射((pi \))有一个包含在({{\textrm{Diff\,}}^+(M)\)中的图像的部分。对于 \(d = 7\) 的情况,我们证明 \({{\,\textrm{Mod}\,}}(M)\) 的所有有限阶元素都有擡起到 \({{\,\textrm{Diff}\、}^+(M)\)的有限子群不提升到 \({{\,\textrm{Mod}\,}(M)\)。我们证明,一个有限子群 \(G \le {{\,\textrm{Mod}\,}}(M)\) 是否上升到 \({{\,\textrm{Diff}\,}}^+(M)\) 的条件等价于某个等变连接和实现 G 的存在。对于 \(d = 6\) 的情况,我们证明了所有最大有限子群 \(G \le {{\,\textrm{Mod}\,}}(M)\) 的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信