A characterization of the Euclidean ball via antipodal points

IF 0.9 3区 数学 Q2 MATHEMATICS
Xuguang Lu
{"title":"A characterization of the Euclidean ball via antipodal points","authors":"Xuguang Lu","doi":"10.1007/s00010-024-01055-3","DOIUrl":null,"url":null,"abstract":"<div><p>Arising from an equilibrium state of a Fermi–Dirac particle system at the lowest temperature, a new characterization of the Euclidean ball is proved: a compact set <span>\\(K\\subset {{{\\mathbb {R}}}^n}\\)</span> (having at least two elements) is an <i>n</i>-dimensional Euclidean ball if and only if for every pair <span>\\(x, y\\in \\partial K\\)</span> and every <span>\\(\\sigma \\in {{{\\mathbb {S}}}^{n-1}}\\)</span>, either <span>\\(\\frac{1}{2}(x+y)+\\frac{1}{2}|x-y|\\sigma \\in K\\)</span> or <span>\\(\\frac{1}{2}(x+y)-\\frac{1}{2}|x-y|\\sigma \\in K\\)</span>. As an application, a measure version of this characterization of the Euclidean ball is also proved and thus the previous result proved for <span>\\(n=3\\)</span> on the classification of equilibrium states of a Fermi–Dirac particle system holds also true for all <span>\\(n\\ge 2\\)</span>.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 3","pages":"637 - 660"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01055-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01055-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Arising from an equilibrium state of a Fermi–Dirac particle system at the lowest temperature, a new characterization of the Euclidean ball is proved: a compact set \(K\subset {{{\mathbb {R}}}^n}\) (having at least two elements) is an n-dimensional Euclidean ball if and only if for every pair \(x, y\in \partial K\) and every \(\sigma \in {{{\mathbb {S}}}^{n-1}}\), either \(\frac{1}{2}(x+y)+\frac{1}{2}|x-y|\sigma \in K\) or \(\frac{1}{2}(x+y)-\frac{1}{2}|x-y|\sigma \in K\). As an application, a measure version of this characterization of the Euclidean ball is also proved and thus the previous result proved for \(n=3\) on the classification of equilibrium states of a Fermi–Dirac particle system holds also true for all \(n\ge 2\).

通过对跖点描述欧几里得球的特征
从费米-狄拉克粒子系统在最低温度下的平衡态出发,证明了欧几里得球的一个新特征:一个紧凑集(K子集{{{{mathbb {R}}^n}\) (至少有两个元素)是一个n维的欧几里得球,当且仅当对于每一对 \(x、y in \partial K\) 和 every \(\sigma \in {{\mathbb {S}}}^{n-1}}\), either \(\frac{1}{2}(x+y)+\frac{1}{2}|x-y|\sigma \in K\) or\(\frac{1}{2}(x+y)-\frac{1}{2}|x-y|\sigma \in K\).作为一个应用,欧几里得球的这一特征的度量版本也被证明了,因此之前证明的关于费米-狄拉克粒子系统平衡态分类的\(n=3\)的结果对于所有的\(n\ge 2\) 也是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信