Controlled Quasi-Latitudinal Solutions for Ultra-Fast Spin-Torque Magnetization Switching

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Alessandro Fortunati, Massimiliano d’Aquino, Claudio Serpico
{"title":"Controlled Quasi-Latitudinal Solutions for Ultra-Fast Spin-Torque Magnetization Switching","authors":"Alessandro Fortunati, Massimiliano d’Aquino, Claudio Serpico","doi":"10.1142/s0218127424500561","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to present a novel class of time-dependent controls to realize ultra-fast magnetization switching in nanomagnets driven by spin-torques produced by spin-polarized electric currents. Magnetization dynamics in such complex systems is governed by the Landau–Lifshitz–Slonczewski equation which describes the precessional motion of (dimensionless) magnetization vector on the unit-sphere. The relevant case of nanoparticles with uniaxial anisotropy having in-plane easy and intermediate axes as well as out-of-plane hard axis is considered. By exploiting the characteristic smallness of damping and spin-torque intensity, the complexity of the magnetic system’s dynamic is dealt with by employing tools borrowed from Hamiltonian Perturbation Theory. More precisely, the aforementioned controls are constructed via suitable perturbative tools in a way to realize approximate <i>latitudinal solutions</i> (i.e. motions on a sphere in which the out-of-plane magnetization component stays constant) with the effect to fast “switch” the system from one stationary state to another. The possibility to keep a (“small”) bounded value of the out-of-plane coordinate throughout this process of “transfer” turns out to be advantageous in the applications as it sensibly reduces the post-switching relaxation oscillations that may cause the failure of switching in real samples. Further relevant quantitative results on the behavior of the solutions during the pre- and post-switching stages (termed “expulsion” and “attraction”, respectively) are given as a by-product. A selection of validating numerical experiments is presented alongside the corresponding theoretical results.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"93 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500561","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to present a novel class of time-dependent controls to realize ultra-fast magnetization switching in nanomagnets driven by spin-torques produced by spin-polarized electric currents. Magnetization dynamics in such complex systems is governed by the Landau–Lifshitz–Slonczewski equation which describes the precessional motion of (dimensionless) magnetization vector on the unit-sphere. The relevant case of nanoparticles with uniaxial anisotropy having in-plane easy and intermediate axes as well as out-of-plane hard axis is considered. By exploiting the characteristic smallness of damping and spin-torque intensity, the complexity of the magnetic system’s dynamic is dealt with by employing tools borrowed from Hamiltonian Perturbation Theory. More precisely, the aforementioned controls are constructed via suitable perturbative tools in a way to realize approximate latitudinal solutions (i.e. motions on a sphere in which the out-of-plane magnetization component stays constant) with the effect to fast “switch” the system from one stationary state to another. The possibility to keep a (“small”) bounded value of the out-of-plane coordinate throughout this process of “transfer” turns out to be advantageous in the applications as it sensibly reduces the post-switching relaxation oscillations that may cause the failure of switching in real samples. Further relevant quantitative results on the behavior of the solutions during the pre- and post-switching stages (termed “expulsion” and “attraction”, respectively) are given as a by-product. A selection of validating numerical experiments is presented alongside the corresponding theoretical results.

超快自旋扭矩磁化切换的受控准纵向解决方案
本文旨在介绍一类新型的随时间变化的控制方法,以实现纳米磁体在自旋极化电流产生的自旋力矩驱动下的超快磁化切换。这种复杂系统中的磁化动力学受 Landau-Lifshitz-Slonczewski 方程控制,该方程描述了单位球上(无量纲)磁化矢量的前向运动。本研究考虑了具有平面内易轴、中间轴和平面外硬轴的单轴各向异性纳米粒子的相关情况。利用阻尼和自旋力矩强度小的特点,借用哈密顿扰动理论的工具来处理磁性系统动态的复杂性。更准确地说,上述控制是通过合适的扰动工具构建的,以实现近似纬向解(即平面外磁化分量保持不变的球面运动),从而快速将系统从一种静止状态 "切换 "到另一种静止状态。在整个 "转换 "过程中保持平面外坐标的("小")约束值的可能性在应用中非常有利,因为它可以合理地减少转换后的弛豫振荡,而这种振荡在实际样品中可能会导致转换失败。在切换前后阶段(分别称为 "驱逐 "和 "吸引")溶液行为的进一步相关定量结果将作为副产品给出。在提供相应理论结果的同时,还提供了一些验证性数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信