Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung
{"title":"Double data piling: a high-dimensional solution for asymptotically perfect multi-category classification","authors":"Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung","doi":"10.1007/s42952-024-00263-6","DOIUrl":null,"url":null,"abstract":"<p>For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00263-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.