Double data piling: a high-dimensional solution for asymptotically perfect multi-category classification

Pub Date : 2024-04-03 DOI:10.1007/s42952-024-00263-6
Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung
{"title":"Double data piling: a high-dimensional solution for asymptotically perfect multi-category classification","authors":"Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung","doi":"10.1007/s42952-024-00263-6","DOIUrl":null,"url":null,"abstract":"<p>For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00263-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.

分享
查看原文
双重数据堆积:渐近完美多类别分类的高维解决方案
对于高维分类来说,训练数据的插值表现为数据堆积现象,即每个类别的数据向量的线性投影坍缩为单一值。最近的研究揭示了二元分类中独立测试数据的 "第二数据堆积 "现象,为渐近完美分类提供了理论依据。本文将这些发现扩展到多类别分类,并对双重数据堆积现象进行了全面描述。我们定义了最大数据堆积子空间,它能最大化多类别分类中成堆训练数据之间的成对距离之和。此外,我们还证明了第二个数据堆积子空间的存在,它能诱发独立数据的数据堆积,并能通过将负阶差判别子空间投影到估计的 "信号 "子空间上而得到一致的估计。通过利用第二数据堆积现象,我们提出了一种用于类别分配的纠偏策略,该策略可近似实现完美分类。本研究揭示了良性过拟合现象,并借助高维渐近学加深了对高维判别的完美多类别分类的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信