Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao, Jinwu Xiang
{"title":"Virtually constrained generalized relative motion modeling and a control parameter optimizer for automatic carrier landing","authors":"Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao, Jinwu Xiang","doi":"10.1108/aeat-08-2023-0217","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.</p><!--/ Abstract__block -->","PeriodicalId":55540,"journal":{"name":"Aircraft Engineering and Aerospace Technology","volume":"6 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Engineering and Aerospace Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/aeat-08-2023-0217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.
Design/methodology/approach
A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.
Findings
The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.
Originality/value
The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.
期刊介绍:
Aircraft Engineering and Aerospace Technology provides a broad coverage of the materials and techniques employed in the aircraft and aerospace industry. Its international perspectives allow readers to keep up to date with current thinking and developments in critical areas such as coping with increasingly overcrowded airways, the development of new materials, recent breakthroughs in navigation technology - and more.