{"title":"Analysis of aero engine plume potential core infrared signature","authors":"Ashish Bhatt, Shripad P. Mahulikar","doi":"10.1108/aeat-04-2023-0112","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M<sub>∞</sub>) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M<sub>∞</sub> on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The potential plume core length and width increases as M<sub>∞</sub> increases. At higher altitudes, the potential core length increases for a fixed M<sub>∞</sub>. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.</p><!--/ Abstract__block -->","PeriodicalId":55540,"journal":{"name":"Aircraft Engineering and Aerospace Technology","volume":"56 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Engineering and Aerospace Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/aeat-04-2023-0112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M∞) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.
Design/methodology/approach
Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M∞ on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.
Findings
The potential plume core length and width increases as M∞ increases. At higher altitudes, the potential core length increases for a fixed M∞. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.
Originality/value
The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.
期刊介绍:
Aircraft Engineering and Aerospace Technology provides a broad coverage of the materials and techniques employed in the aircraft and aerospace industry. Its international perspectives allow readers to keep up to date with current thinking and developments in critical areas such as coping with increasingly overcrowded airways, the development of new materials, recent breakthroughs in navigation technology - and more.