{"title":"Ad-invariant metrics on nonnice nilpotent Lie algebras","authors":"D. Conti, V. del Barco, F. A. Rossi","doi":"10.1142/s0219498825502329","DOIUrl":null,"url":null,"abstract":"<p>We proved in previous work that all real nilpotent Lie algebras of dimension up to <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn></math></span><span></span> carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret <i>et al.</i> In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn></math></span><span></span> and every nilpotency step greater than <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We proved in previous work that all real nilpotent Lie algebras of dimension up to carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret et al. In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than and every nilpotency step greater than . In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.