Ad-invariant metrics on nonnice nilpotent Lie algebras

Pub Date : 2024-04-05 DOI:10.1142/s0219498825502329
D. Conti, V. del Barco, F. A. Rossi
{"title":"Ad-invariant metrics on nonnice nilpotent Lie algebras","authors":"D. Conti, V. del Barco, F. A. Rossi","doi":"10.1142/s0219498825502329","DOIUrl":null,"url":null,"abstract":"<p>We proved in previous work that all real nilpotent Lie algebras of dimension up to <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn></math></span><span></span> carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret <i>et al.</i> In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn></math></span><span></span> and every nilpotency step greater than <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proved in previous work that all real nilpotent Lie algebras of dimension up to 10 carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret et al. In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than 10 and every nilpotency step greater than 2. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.

分享
查看原文
非完美零能李代数上的自不变度量
我们在之前的工作中证明了维度不超过 10 的所有实无蕴含有自不变度量的李代数都是美好的,即它们承认劳雷特等人意义上的美好基础。在本文中,我们通过构造明确的例子来证明,在维数大于 10 和零阶数大于 2 的情况下,都存在容纳自不变度量的非漂亮的不可还原零钾列布尔。在此过程中,我们引入了一种构造具有自不变度量的列布尔的方法,称为单扩展,与著名的双扩展过程并行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信