Existence, Stability and Slow Dynamics of Spikes in a 1D Minimal Keller–Segel Model with Logistic Growth

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Fanze Kong, Michael J. Ward, Juncheng Wei
{"title":"Existence, Stability and Slow Dynamics of Spikes in a 1D Minimal Keller–Segel Model with Logistic Growth","authors":"Fanze Kong, Michael J. Ward, Juncheng Wei","doi":"10.1007/s00332-024-10025-7","DOIUrl":null,"url":null,"abstract":"<p>We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller–Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis of localized patterns for this two-component reaction–diffusion (RD) model is based, not on the usual limit of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity <span>\\(d_2=\\epsilon ^2\\ll 1\\)</span> of the chemoattractant concentration field. In the limit <span>\\(d_2\\ll 1\\)</span>, steady-state and quasi-equilibrium 1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state <i>N</i>-spike patterns, we analyze the spectral properties associated with both the “large” <span>\\({{\\mathcal {O}}}(1)\\)</span> and the “small” <i>o</i>(1) eigenvalues associated with the linearization of the Keller–Segel model. By analyzing a nonlocal eigenvalue problem characterizing the large eigenvalues, it is shown that <i>N</i>-spike equilibria can be destabilized by a zero-eigenvalue crossing leading to a competition instability if the cellular diffusion rate <span>\\(d_1\\)</span> exceeds a threshold, or from a Hopf bifurcation if a relaxation time constant <span>\\(\\tau \\)</span> is too large. In addition, a matrix eigenvalue problem that governs the stability properties of an <i>N</i>-spike steady-state with respect to the small eigenvalues is derived. From an analysis of this matrix problem, an explicit range of <span>\\(d_1\\)</span> where the <i>N</i>-spike steady-state is stable to the small eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an <span>\\({{\\mathcal {O}}}(1)\\)</span> time-scale, we derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes. Unexpectedly, our analysis of the KS model with logistic growth in the singular limit <span>\\(d_2\\ll 1\\)</span> is rather closely related to the analysis of spike patterns for the Gierer–Meinhardt RD system.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10025-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller–Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis of localized patterns for this two-component reaction–diffusion (RD) model is based, not on the usual limit of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity \(d_2=\epsilon ^2\ll 1\) of the chemoattractant concentration field. In the limit \(d_2\ll 1\), steady-state and quasi-equilibrium 1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state N-spike patterns, we analyze the spectral properties associated with both the “large” \({{\mathcal {O}}}(1)\) and the “small” o(1) eigenvalues associated with the linearization of the Keller–Segel model. By analyzing a nonlocal eigenvalue problem characterizing the large eigenvalues, it is shown that N-spike equilibria can be destabilized by a zero-eigenvalue crossing leading to a competition instability if the cellular diffusion rate \(d_1\) exceeds a threshold, or from a Hopf bifurcation if a relaxation time constant \(\tau \) is too large. In addition, a matrix eigenvalue problem that governs the stability properties of an N-spike steady-state with respect to the small eigenvalues is derived. From an analysis of this matrix problem, an explicit range of \(d_1\) where the N-spike steady-state is stable to the small eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an \({{\mathcal {O}}}(1)\) time-scale, we derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes. Unexpectedly, our analysis of the KS model with logistic growth in the singular limit \(d_2\ll 1\) is rather closely related to the analysis of spike patterns for the Gierer–Meinhardt RD system.

Abstract Image

具有对数增长的一维最小凯勒-西格尔模型中尖峰的存在性、稳定性和慢动态性
我们分析了包含细胞群对数增长效应的凯勒-西格尔趋化模型的局部一维尖峰模式的存在性、线性稳定性和缓慢动力学。我们对这一双分量反应-扩散(RD)模型的局部模式的分析不是基于通常的大趋化漂移系数极限,而是基于趋化吸引物浓度场的渐近小扩散率的奇异极限\(d_2=\epsilon ^2\ll 1\) 。在极限(d_2)中,稳态和准平衡一维多尖峰模式被渐进地构建出来。为了确定稳态 N-尖峰模式的线性稳定性,我们分析了与凯勒-西格尔模型线性化相关的 "大"({{\mathcal {O}}} (1))和 "小"(o(1))特征值的光谱特性。通过分析表征大特征值的非局部特征值问题,研究表明,如果细胞扩散率\(d_1\)超过阈值,N-尖峰平衡会因为零特征值交叉导致竞争不稳定性而失稳;如果弛豫时间常数\(\tau \)过大,N-尖峰平衡也会因为霍普夫分岔而失稳。此外,还推导出了一个矩阵特征值问题,该问题控制着 N-尖峰稳态在小特征值方面的稳定性。通过对这一矩阵问题的分析,确定了 N-尖峰稳态对小特征值稳定的 \(d_1\) 的明确范围。最后,对于在 \({\mathcal {O}}}(1)\) 时间尺度上稳定的准平衡尖峰模式,我们推导出了一个微分代数系统(DAE)来控制局部尖峰集合的慢动力学。意想不到的是,我们对奇异极限 \(d_2\ll 1\) 中具有对数增长的 KS 模型的分析与对 Gierer-Meinhardt RD 系统尖峰模式的分析密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信